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Markov Chains: 
 

Consider an irreducible Markov chain with N states. 

a. Show that for N=2 the chain is always reversible. 

b. Give an example of a Markov chain that is not reversible, with the minimal 
possible N. 

 

1. 

Random walk with reflecting boundaries:  Consider a Markov chain over the 
state space { , 1, , }m m m    , and transition probabilities ( )ijp  given by  

,min{ 1, } ,max{ 1, }1 (0,1)i i m i i mp p        

a. Is this chain irreducible? Periodic? 

b. Show that the chain is reversible, and compute the stationary distribution. 

c. Simulation: For 1m  , choose some   and initial conditions, and compute 

numerically ( )t . Plot all three components and verify convergence to the 
stationary distribution. 

 

2. 

AR(1): Consider an order-1 auto-regressive model with parameter a : 

1 , 0,1, 2,t t tX aX w t      

Here ( )tw  is an iid sequence with 2(0, )tw N  , 0  , | | 1a  , and  tX  . 

a. Write down the transition function ( | )f y x , namely the pdf of 1tX   

conditioned on tX x . 

b. Show that ( )tX is a reversible Markov chain with stationary distribution 

2
1(0, )N  , and compute 2

1 . 

c. How will your answers change if | | 1a  ?  Explain briefly. 

 

3. 
 

Metropolis-Hastings: 

The Metropolis-Hasting-Green (MHG) Algorithm: The MHG algorithm is a 
generalization of MH that allows state-dependent mixing of several transition 
matrices. Let { ( ( , )), }i iQ q x y i I   be a finite collection of transition functions 

over the same (finite) state space  .  

For each state x , let ( ) ( ( ))i i Ix x     be a probability vector.  

Each step of the MHG algorithm proceeds as follows: 
1. Starting from tX x , choose an index i  with probability ( )i x . 

2. Sample Y from ( , )iq x  . 

3. Set 1tX Y   with probability ( )i x , and 1tX x   otherwise, where 

( ) ( ) ( , )
( , ) min{1, ( , )}, ( , )

( ) ( ) ( , )
i i

i i i
i i

f y y q y x
x y x y x y

f x x q x y


  


   

4. 
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a. Write down an expression for the transition probabilities 1( | )t tp X y X x   . 

b. Show that f  is a stationary distribution of the Markov chain ( )tX .  
 
Sampling Spanning Trees: Let G=(V,E) be an undirected and fully connected 
graph. A simple MCMC algorithm to sample uniformly from the set of spanning 
trees of G is the following: Start with some spanning tree; add uniformly-at-
random some edge from G (so that one cycle forms); remove uniformly-at-random 
some link from this cycle; repeat. 

Suppose now that the graph is positively weighted, i.e., each edge e E  has some 
cost 0ec  . The weight of any sub-graph of G is the sum of costs of its edges. 

a. Suggest an MCMC algorithm that samples from the set of spanning trees of G, 
with a probability that is proportional to their weights. 

b. Suppose we wish to estimate the average weight of a spanning tree. Suggest 
two variants of the above MCMC algorithms that provide this estimate. 

 

5. 

Simulation (spanning trees): Implement the algorithms of Problem 5 on some 
small (but non-trivial) weighted graph of your choosing: 

a. Implement the algorithm in 5a. Show graphs of the empirical frequencies and 
verify convergence to the correct values. 

b. Implement the two algorithms from 5b. Examine and compare their 
convergence visually.  

c. Use the batch method (with 20 batches) to estimate the standard deviation of 
these two algorithms. Estimate the number of samples required to obtain a 1% 
accuracy (with 95% confidence).  

 

6.  

The Gibbs Sampler: 

Show that the Random Sweep Gibbs Sampler induces a reversible Markov chain. 
 

8. 

Bivariate Normal Sampling. Apply the Gibbs sampler to sampling from the 

bivariate normal distribution, 1 2( , ) ( , )TX x x N   . 

a. Compute the conditional distributions ( | )i i jf x x , and write down the 

systematic Gibbs sampling algorithm for this problem. 

Simulation: Apply the Gibbs sampler with parameters 
0 0.8

,
0 1

b

b


   
     
   

,  

and two values of b : 0.2b   and 0.85b  . Adjust the number of samples (and 
other parameters) according to the simulation results to obtain meaningful 
conclusions. 

b. Plot the empirical covariance between the components of X  as a function of 
time, verify convergence to   and compare convergence rates. 

c. A common measure for the mixing properties of a sampled Markov chain is the 
autocorrelation function, namely  ( ) cov( ( ), ( ))R k X t X t k   as a function of 

0k  . Estimate and plot the autocorrelation function for the first component 1x  

of X . Compare and discuss briefly.  
 

9.  

 


