Technion—Israel Intitute of Technology

The Erna and Andrew Viterbi Department of Electrical Engineering

Estimation and Identification in Dynamical Systems (048825)

Lecture Notes: Prof. Nahum Shimkin, Spring 2016

4 Derivations of the Discrete-Time Kalman Filter

We derive here the basic equations of the Kalman filter (KF), for discrete-time linear systems. We consider several derivations under different assumptions and viewpoints:

- For the Gaussian case, the KF is the optimal (MMSE) state estimator.
- In the non-Gaussian case, the KF is derived as the best <u>linear</u> (LMMSE) state estimator.
- We also provide a deterministic (least-squares) interpretation.

We start by describing the basic state-space model.

Contents

- 4.1 The Stochastic State-Space Model
- 4.2 The KF for the Gaussian Model
- 4.3 Best Linear Estimator Innovations Approach
- 4.4 The KF as a Least-Squares Problem
- 4.5 The KF Equations Summary

4.1 The Stochastic State-Space Model

A discrete-time, <u>linear</u>, time-varying state space system is given by:

$$x_{k+1} = F_k x_k + G_k w_k$$
 (state evolution equation)
 $z_k = H_k x_k + v_k$ (measurement equation)

for $k \geq 0$ (say), and initial conditions x_0 .

Here:

- F_k , G_k , H_k are known matrices.
- $x_k \in \mathbb{R}^n$ is the state vector.
- $w_k \in \mathbb{R}^{n_w}$ is the state noise.
- $z_k \in \mathbb{R}^m$ is the observation vector.
- v_k the observation noise.
- The initial conditions are given by x_0 , usually a random variable.

The noise sequences (w_k, v_k) and the initial conditions x_0 are stochastic processes with known distributions.

The Markovian model

Recall that a stochastic process $\{X_k\}$ is a Markov process if

$$p(X_{k+1}|X_k, X_{k-1}, \dots) = p(X_{k+1}|X_k)$$
.

For the state x_k to be Markovian, we need the following assumption.

Assumption A1: The state-noise process $\{w_k\}$ is white in the strict sense, namely all w_k 's are independent of each other. Furthermore, this process is independent of x_0 .

The following is then a simple exercise:

Proposition: Under A1, the state process $\{x_k, k \geq 0\}$ is a Markov process.

Note:

• Linearity is not essential: The Markov property follows from A1 also for the nonlinear state equation $x_{k+1} = f(x_k, w_k)$.

- \bullet The measurement process z_k is usually not Markov.
- The pdf of the state can (in principle) be computed recursively via the following (Chapman-Kolmogorov) equation:

$$p(x_{k+1}) = \int p(x_{k+1}|x_k)p(x_k)dx_k$$
.

where $p(x_{k+1}|x_k)$ is determined by $p(w_k)$.

The Gaussian model

- Assume that the noise sequences $\{w_k\}$, $\{v_k\}$ and the initial conditions x_0 are jointly Gaussian.
- It easily follows that the processes $\{x_k\}$ and $\{z_k\}$ are (jointly) Gaussian as well
- If, in addition, A1 is satisfied (namely $\{w_k\}$ is white and independent of x_0), then x_k is a Markov process.

This model is often called the Gauss-Markov Model.

Second-Order Model

We often assume that only the first and second order statistics of the noise is known. Consider our linear system:

$$x_{k+1} = F_k x_k + G_k w_k, \quad k \ge 0$$

 $z_k = H_k x_x + v_k,$

under the following assumptions:

- w_k a 0-mean white noise: $E(w_k) = 0$, $cov(w_k, w_l) = Q_k \delta_{kl}$.
- v_k a 0-mean white noise: $E(v_k) = 0$, $cov(v_k, v_l) = R_k \delta_{kl}$.
- $cov(w_k, v_l) = 0$: uncorrelated noise.
- x_0 is uncorrelated with the other noise sequences. denote $\overline{x}_0 = E(x_0)$, $cov(x_0) = P_0$.

We refer to this model as the standard second-order model.

It is sometimes useful to allow correlation between v_k and w_k :

$$cov(w_k, v_l) \equiv E(w_k v_l^T) = S_k \delta_{kl}$$
.

This gives the second-order model with correlated noise.

A short-hand notation for the above correlations:

$$\operatorname{cov}\left(\left[\begin{array}{c} w_k \\ v_k \\ x_0 \end{array}\right], \left[\begin{array}{c} w_l \\ v_l \\ x_0 \end{array}\right]\right) = \left[\begin{array}{ccc} Q_k \delta_{kl} & S_k \delta_{kl} & 0 \\ S_k^T \delta_{kl} & R_k \delta_{kl} & 0 \\ 0 & 0 & P_0 \end{array}\right]$$

Note that the Gauss-Markov model is a special case of this model.

Mean and covariance propagation

For the standard second-order model, we easily obtain recursive formulas for the mean and covariance of the *state*, when no measurement is given.

• The mean obviously satisfies:

$$\overline{x}_{k+1} = F_k \overline{x}_k + G_k \overline{w}_k = F_k \overline{x}_k$$

• Consider next the covariance:

$$P_k \triangleq E((x_k - \overline{x}_k)(x_k - \overline{x})^T).$$

Note that $x_{k+1} - \overline{x}_{k+1} = F_k(x_k - \overline{x}_k) + G_k w_k$, and w_k and x_k are uncorrelated (why?). Therefore

$$P_{k+1} = F_k P_k F_k^T + G_k Q_k G_k^T.$$

This equation is in the form of a Lyapunov difference equation.

• Since $z_k = H_k x_x + v_k$, it is now easy to compute its covariance:

$$cov(z_k) = H_k P_k H_k^T + R_k ,$$

and similarly for the joint covariances of (x_k, z_k) .

• In the Gaussian case, the pdf of x_k is completely specified by the mean and covariance: $x_k \sim N(\overline{x}_k, P_k)$.

4.2 The KF for the Gaussian Model

Consider the linear Gaussian (or Gauss-Markov) model

$$x_{k+1} = F_k x_k + G_k w_k, \quad k \ge 0$$

$$z_k = H_k x_x + v_k$$

where:

• $\{w_k\}$ and $\{v_k\}$ are independent, zero-mean Gaussian white processes with covariances

$$E(v_k v_l^T) = R_k \delta_{kl}, \quad E(w_k w_l^T) = Q_k \delta_{kl}$$

• The initial state x_0 is a Gaussian RV, independent of the noise processes, with $x_0 \sim N(\overline{x}_0, P_0)$.

Let $Z_k = (z_0, ..., z_k)$. Our goal is to compute recursively the following optimal (MMSE) estimator of x_k :

$$\hat{x}_k^+ \equiv \hat{x}_{k|k} \triangleq E(x_k|Z_k).$$

Also define the *one-step predictor* of x_k :

$$\hat{x}_k^- \equiv \hat{x}_{k|k-1} \triangleq E(x_k|Z_{k-1})$$

and the respective covariance matrices:

$$P_k^+ \equiv P_{k|k} \triangleq E\{x_k - \hat{x}_k^+)(x_k - \hat{x}_k^+)^T | Z_k \}$$

$$P_k^- \equiv P_{k|k-1} \triangleq E\{x_k - \hat{x}_k^-)(x_k - \hat{x}_k^-)^T | Z_{k-1} \}.$$

Note that P_k^+ (and similarly P_k^-) can be viewed in two ways:

- (i) It is the covariance matrix of the (posterior) estimation error, $e_k = x_k \hat{x}_k^+$. In particular, $\text{MMSE}(\hat{x}_k^+) = \text{trace}(P_k^+)$.
- (ii) It is the covariance matrix of the "conditional RV $(x_k|Z_k)$ ", namely an RV with distribution $p(x_k|Z_k)$ (since \hat{x}_k^+ is its mean).

Finally, denote $P_0^- \triangleq P_0$, $\hat{x}_0^- \triangleq \overline{x}_0$.

Recall the formulas for conditioned Gaussian vectors:

• If X and X are jointly Gaussian, then $p_{x|z} \sim N(m, \Sigma)$, with

$$m = m_x + \Sigma_{xz} \Sigma_{zz}^{-1} (z - m_z),$$

$$\Sigma = \Sigma_{xx} - \Sigma_{xz} \Sigma_{zz}^{-1} \Sigma_{zx}.$$

• The same formulas hold when everything is conditioned, in addition, on another random vector.

According to the terminology above, we say in this case that the conditional RV (X|z) is Gaussian.

Proposition: For the model above, all random processes (noises, x_k , z_k) are jointly Gaussian.

Proof: All can be expressed as *linear* combinations of the noise sequences, which are jointly Gaussian (why?). \Box

It follows that $(x_k|Z_m)$ is Gaussian (for any k, m). In particular:

$$(x_k|Z_k) \sim N(\hat{x}_k^+, P_k^+), \quad (x_k|Z_{k-1}) \sim N(\hat{x}_k^-, P_k^-).$$

Filter Derivation

Suppose, at time k, that (\hat{x}_k^-, P_k^-) is given.

We shall compute (\hat{x}_k^+, P_k^+) and $(\hat{x}_{k+1}^-, P_{k+1}^-)$, using the following two steps.

Measurement update step: Since $z_k = H_k x_k + v_k$, then the conditional vector $(\binom{x_k}{z_k}|Z_{k-1})$ is Gaussian, with mean and covariance:

$$\begin{bmatrix} \hat{x}_k^- \\ H_k \hat{x}_k^- \end{bmatrix}, \begin{bmatrix} P_k^- & P_k^- H_k^T \\ H_k P_k^- & M_k \end{bmatrix}$$

where

$$M_k \triangleq H_k P_k^- H_k^T + R_k .$$

To compute $(x_k|Z_k) = (x_k|z_k, Z_{k-1})$, we apply the above formula for conditional expectation of Gaussian RVs, with everything pre-conditioned on Z_{k-1} . It follows that $(x_k|Z_k)$ is Gaussian, with mean and covariance:

$$\hat{x}_k^+ \triangleq E(x_k|Z_k) = \hat{x}_k^- + P_k^- H_k^T (M_k)^{-1} (z_k - H_k \hat{x}_k^-)$$
$$P_k^+ \triangleq \text{cov}(x_k|Z_k) = P_k^- - P_k^- H_k^T (M_k)^{-1} H_k P_k^-$$

Time update step Recall that $x_{k+1} = F_k x_k + G_k w_k$. Further, x_k and w_k are independent given Z_k (why?). Therefore,

$$\hat{x}_{k+1}^{-} \triangleq E(x_{k+1}|Z_k) = F_k \hat{x}_k^{+}$$

$$P_{k+1}^{-} \triangleq \text{cov}(x_{k+1}|Z_k) = F_k P_k^{+} F_k^{T} + G_k Q_k G_k^{T}$$

Remarks:

- 1. The KF computes both the estimate \hat{x}_k^+ and its MSE/covariance P_k^+ (and similarly for \hat{x}_k^-).
 - Note that the covariance computation is needed as part of the estimator computation. However, it is also of independent importance as is assigns a measure of the uncertainty (or confidence) to the estimate.
- 2. It is remarkable that the conditional covariance matrices P_k^+ and P_k^- do not depend on the measurements $\{z_k\}$. They can therefore be computed in advance, given the system matrices and the noise covariances.
- 3. As usual in the Gaussian case, P_k^+ is also the *unconditional* error covariance:

$$P_k^+ = \text{cov}(x_k - \hat{x}_k^+) = E[(x_k - \hat{x}_k^+)(x_k - \hat{x}_k^+)^T].$$

In the non-Gaussian case, the unconditional covariance will play the central role as we compute the LMMSE estimator.

- 4. Suppose we need to estimate some $s_k \triangleq Cx_k$. Then the optimal estimate is $\hat{s}_k = E(s_k|Z_k) = C\hat{x}_k^+$.
- 5. The following "output prediction error"

$$\tilde{z}_k \triangleq z_k - H_k \hat{x}_k^- \equiv z_k - E(z_k | Z_{k-1})$$

is called the *innovation*, and $\{\tilde{z}_k\}$ is the important *innovations process*. Note that $M_k = H_k P_k^- H_k^T + R_k$ is just the covariance of \tilde{z}_k .

4.3 Best Linear Estimator – Innovations Approach

a. Linear Estimators

Recall that the best linear (or LMMSE) estimator of X given Y is an estimator of the form $\hat{x} = Ay + b$, which minimizes the mean square error $E(\|x - \hat{x}\|^2)$. It is given by:

$$\hat{x} = m_x + \Sigma_{xy} \Sigma_{yy}^{-1} (y - m_y)$$

where Σ_{xy} and Σ_{yy} are the covariance matrices. It easily follows that \hat{x} is unbiased: $E(\hat{x}) = m_x$, and the corresponding (minimal) error covariance is

$$cov(x - \hat{x}) = E(x - \hat{x})(x - \hat{x})^T = \Sigma_{xx} - \Sigma_{xy}\Sigma_{yy}^{-1}\Sigma_{xy}^T$$

We shall find it convenient to denote this estimator \hat{x} as $E^{L}(x|y)$. Note that this is not the standard conditional expectation.

Recall further the orthogonality principle:

$$E((x - E^L(x|y))L(y)) = 0$$

for any *linear* function L(y) of y.

The following property will be most useful. It follows simply by using $y = (y_1; y_2)$ in the formulas above:

• Suppose $cov(y_1, y_2) = 0$. Then

$$E^{L}(x|y_1, y_2) = E^{L}(x|y_1) + [E^{L}(x|y_2) - E(x)].$$

Furthermore,

$$cov(x - E^{L}(x|y_1, y_2)) = (\sum_{xx} - \sum_{xy_1} \sum_{y_1y_1}^{-1} \sum_{xy_1}^{T}) - \sum_{xy_2} \sum_{y_2y_2}^{-1} \sum_{xy_2}^{T}.$$

b. The innovations process

Consider a discrete-time stochastic process $\{z_k\}_{k\geq 0}$. The (wide-sense) innovations process is defined as

$$\tilde{z}_k = z_k - E^L(z_k|Z_{k-1}),$$

where $Z_{k-1} = (z_0; \dots z_{k-1})$. The innovation RV \tilde{z}_k may be regarded as containing only the new statistical information which is not already in Z_{k-1} .

The following properties follow directly from those of the best linear estimator:

- (1) $E(\tilde{z}_k) = 0$, and $E(\tilde{z}_k Z_{k-1}^T) = 0$.
- (2) \tilde{z}_k is a linear function of Z_k .
- (3) Thus, $\operatorname{cov}(\tilde{z}_k, \tilde{z}_l) = E(\tilde{z}_k \tilde{z}_l^T) = 0$ for $k \neq l$.

This implies that the innovations process is a zero-mean white noise process.

Denote $\tilde{Z}_k = (\tilde{z}_0; \dots; \tilde{z}_k)$. It is easily verified that Z_k and \tilde{Z}_k are linear functions of each other. This implies that $E^L(x|Z_k) = E^L(x|\tilde{Z}_k)$ for any RV x.

It follows that (taking E(x) = 0 for simplicity):

$$E^{L}(x|Z_{k}) = E^{L}(x|\tilde{Z}_{k})$$

$$= E^{L}(x|\tilde{Z}_{k-1}) + E^{L}(x|\tilde{z}_{k}) = \sum_{l=0}^{k} E^{L}(x|\tilde{z}_{l})$$

c. Derivation of the KF equations

We proceed to derive the Kalman filter as the best linear estimator for our linear, non-Gaussian model. We slightly generalize the model that was treated so far by allowing correlation between the state noise and measurement noise. Thus, we consider the model

$$x_{k+1} = F_k x_k + G_k w_k, \quad k \ge 0$$

$$z_k = H_k x_k + v_k,$$

with $[w_k; v_k]$ a zero-mean white noise sequence with covariance

$$E(\begin{bmatrix} w_k \\ v_k \end{bmatrix} [w_l^T, v_l^T]) = \begin{bmatrix} Q_k & S_k \\ S_k^T & R_k \end{bmatrix} \delta_{kl}.$$

 x_0 has mean \overline{x}_0 , covariance P_0 , and is uncorrelated with the noise sequence.

We use here the following notation:

$$Z_{k} = (z_{0}; \dots; z_{k})$$

$$\hat{x}_{k|k-1} = E^{L}(x_{k}|Z_{k-1}) \qquad \hat{x}_{k|k} = E^{L}(x_{k}|Z_{k})$$

$$\tilde{x}_{k|k-1} = x_{k} - \hat{x}_{k|k-1} \qquad \tilde{x}_{k|k} = x_{k} - \hat{x}_{k|k}$$

$$P_{k|k-1} = \operatorname{cov}(\tilde{x}_{k|k-1}) \qquad P_{k|k} = \operatorname{cov}(\tilde{x}_{k|k})$$

and define the innovations process

$$\tilde{z}_k \triangleq z_k - E^L(z_k|Z_{k-1}) = z_k - H_k \hat{x}_{k|k-1}.$$

Note that

$$\tilde{z}_k = H_k \tilde{x}_{k|k-1} + v_k .$$

Measurement update: From our previous discussion of linear estimation and innovations,

$$\hat{x}_{k|k} = E^{L}(x_{k}|Z_{k}) = E^{L}(x_{k}|\tilde{Z}_{k})
= E^{L}(x_{k}|\tilde{Z}_{k-1}) + E^{L}(x_{k}|\tilde{z}_{k}) - E(x_{k})$$

This relation is the basis for the innovations approach. The rest follows essentially by direct computations, and some use of the orthogonality principle. First,

$$E^{L}(x_k|\tilde{z}_k) - E(x_k) = \operatorname{cov}(x_k, \tilde{z}_k)\operatorname{cov}(\tilde{z}_k)^{-1}\tilde{z}_k.$$

The two covariances are next computed:

$$\operatorname{cov}(x_k, \tilde{z}_k) = \operatorname{cov}(x_k, H_k \tilde{x}_{k|k-1} + v_k) = P_{k|k-1} H_k^T,$$

where $E(x_k \tilde{x}_{k|k-1}^T) = P_{k|k-1}$ follows by orthogonality, and we also used the fact that v_k and x_k are not correlated. Similarly,

$$cov(\tilde{z}_k) = cov(H_k \tilde{x}_{k|k-1} + v_k) = H_k P_{k|k-1} H_k^T + R_k \triangleq M_k$$

By substituting in the estimator expression we obtain

$$\hat{x}_{k|k} = \hat{x}_{k|k-1} + P_{k|k-1} H_k^T M_k^{-1} \tilde{z}_k$$

<u>Time update</u>: This step is less trivial than before due to the correlation between v_k and w_k . We have

$$\hat{x}_{k+1|k} = E^{L}(x_{k+1}|\tilde{Z}_{k}) = E^{L}(F_{k}x_{k} + G_{k}w_{k}|\tilde{Z}_{k})$$
$$= F_{k}\hat{x}_{k|k} + G_{k}E^{L}(w_{k}|\tilde{z}_{k})$$

In the last equation we used $E^L(w_k|\tilde{Z}_{k-1}) = 0$ since w_k is uncorrelated with \tilde{Z}_{k-1} . Thus

$$\hat{x}_{k+1|k} = F_k \hat{x}_{k|k} + G_k E(w_k \tilde{z}_k^T) \operatorname{cov}(\tilde{z}_k)^{-1} \tilde{z}_k
= F_k \hat{x}_{k|k} + G_k S_k M_k^{-1} \tilde{z}_k$$

where $E(w_k \tilde{z}_k^T) = E(w_k v_k^T) = S_k$ follows from $\tilde{z}_k = H_k \tilde{x}_{k|k-1} + v_k$.

Combined update: Combining the measurement and time updates, we obtain the one-step update for $\hat{x}_{k|k-1}$:

$$\hat{x}_{k+1|k} = F_k \hat{x}_{k|k-1} + K_k \tilde{z}_k$$

where

$$K_{k} \triangleq (F_{k}P_{k|k-1}H_{k} + G_{k}S_{k})M_{k}^{-1}$$

$$\tilde{z}_{k} = z_{k} - H_{k}\hat{x}_{k|k-1}$$

$$M_{k} = H_{k}P_{k|k-1}H_{k}^{T} + R_{k}.$$

Covariance update: The relation between $P_{k|k}$ and $P_{k|k-1}$ is exactly as before. The recursion for $P_{k+1|k}$ is most conveniently obtained in terms of $P_{k|k-1}$ directly. From the previous relations we obtain

$$\tilde{x}_{k+1|k} = (F_k - K_k H_k) \tilde{x}_{k|k-1} + G_k w_k - K_k v_k$$

Since \tilde{x}_k is uncorrelated with w_k and v_k ,

$$P_{k+1|k} = (F_k - K_k H_k) P_{k|k-1} (F_k - K_k H_k)^T + G_k Q_k G_k^T + K_k R_k K_k^T - (G_k S_k K_k^T + K_k S_k^T G_k^T)$$

This completes the filter equations for this case.

Addendum: A Hilbert space interpretation

The definitions and results concerning linear estimators can be nicely interpreted in terms of a Hilbert space formulation.

Consider for simplicity all RVs in this section to have 0 mean.

Recall that a Hilbert space is a (complete) inner-product space. That is, it is a linear vector space V, with a real-valued inner product operation $\langle v_1, v_2 \rangle$ which is bi-linear, symmetric, and non-degenerate ($\langle v, v \rangle = 0$ iff v = 0). (Completeness means that every Cauchy sequence has a limit.) The derived norm is defined as $||v||^2 = \langle v, v \rangle$. The following facts are standard:

- 1. A subspace S is a linearly-closed subset of V. Alternatively, it is the linear span of some set of vectors $\{v_{\alpha}\}$.
- 2. The orthogonal projection $\Pi_S v$ of a vector v unto the subspace S is the closest element to v in S, i.e., the vector $v' \in S$ which minimizes ||v v'||. Such a vector exists and is unique, and satisfies $(v \Pi_S v) \perp S$, i.e., $\langle v \Pi_S v, s \rangle = 0$ for $s \in S$.
- 3. If $S = \operatorname{span}\{s_1, \dots, s_k\}$, then $\Pi_S v = \sum_{i=1}^k \alpha_i s_i$, where $[\alpha_1, \dots, \alpha_k] = [\langle v, s_1 \rangle, \dots, \langle v, s_k \rangle] [\langle s_i, s_j \rangle_{i,j=1\dots k}]^{-1}$
- 4. If $S = S_1 \oplus S_2$ (S is the direct sum of two orthogonal subspaces S_1 and S_2), then

$$\Pi_S v = \Pi_{S_1} v + \Pi_{S_2} v.$$

If $\{s_1, \ldots, s_k\}$ is an *orthogonal basis* of S, then

$$\Pi_S v = \sum_{i=1}^k \langle v, s_i \rangle \langle s_i, s_i \rangle^{-1} s_i$$

5. Given a set of (independent) vectors $\{v_1, v_2 \dots\}$, the following *Gram-Schmidt* procedure provides an orthogonal basis:

$$\begin{split} \tilde{v}_k &= v_k - \prod_{span\{v_1...v_{k-1}\}} v_k \\ &= v_k - \sum_{i=1}^{k-1} \langle v_k, \tilde{v}_i \rangle \langle \tilde{v}_i, \tilde{v}_i \rangle^{-1} v_i \end{split}$$

We can fit the previous results on linear estimation to this framework by noting the following correspondence:

- Our Hilbert space is the space of all zero-mean random variables X (on a given probability space) which are square-integrable: $E(X^2) = 0$. The inner product in defined as $\langle X, Y \rangle = E(XY)$.
- The optimal linear estimator $E^L(x_k|Z_k)$, with $Z_k = (z_0, \ldots, z_k)$, is the orthogonal projection of the vector x_k on the subspace spanned by Z_k . (If x_k is vector-valued, we simply consider the projection of each element separately.)
- The innovations process $\{z_k\}$ is an orthogonalized version of $\{z_k\}$.

The Hilbert space formulation provides a nice insight, and can also provide useful technical results, especially in the continuous-time case. However, we shall not go deeper into this topic.

4.4 The Kalman Filter as a Least-Squares Problem

Consider the following deterministic optimization problem.

The cost function (to be minimized):

$$J_{k} = \frac{1}{2} (x_{0} - \overline{x}_{0})^{T} P_{0}^{-1} (x_{0} - \overline{x}_{0})$$

$$+ \frac{1}{2} \sum_{l=0}^{k} (z_{l} - H_{l} x_{l})^{T} R_{l}^{-1} (z_{l} - H_{l} x_{l})$$

$$+ \frac{1}{2} \sum_{l=0}^{k-1} w_{l}^{T} Q_{l}^{-1} w_{l}$$

under constraints:

$$x_{l+1} = F_l x_l + G_l w_l$$
, $l = 0, 1, \dots, k-1$

The variables are:

$$x_0,\ldots x_k; w_0,\ldots w_{k-1}$$
.

Here \overline{x}_0 , $\{z_l\}$ are given vectors, and P_0 , R_l , Q_l symmetric positive-definite matrices.

Let $(x_o^{(k)}, \ldots, x_k^{(k)})$ denote the optimal solution of this problem. We claim that $x_k^{(k)}$ is given by exactly the same equations as $\hat{x}_{k|k}$ in the corresponding KF problem.

This claim can be established by writing explicitly the least-squares solution for k-1 and k, and manipulating the matrix expressions. We will take here a quicker route, using the Gaussian insight.

Theorem The minimizing solution $(x_o^{(k)}, \ldots, x_k^{(k)})$ of the above LS problem is the maximizer of the conditional probability (that is, the MAP estimator):

$$p(x_0,\ldots,x_k|Z_k)$$
, $w.r.t.(x_o,\ldots,x_k)$

related to the Gaussian model:

$$x_{k+1} = F_k x_k + G_k w_k, \quad x_0 \sim N(\overline{x}_0, P_0)$$

 $z_k = H_k x_k + v_k, \quad w_k \sim N(0, Q_k), \ v_k \sim N(0, P_k)$

with w_k , v_k white and independent of x_0 .

Proof: Write down the distribution $p(x_0 ... x_k, Z_k)$.

Immediate Consequence: Since for Gaussian RV's MAP = MMSE, then $(x_0, \ldots, x_k)^{(k)}$ are equivalent to the expected means: In particular, $x_k^{(k)} = x_k^+$.

Remark: The above theorem (but not the last consequence) holds true even for the non-linear model: $x_{k+1} = F_k(x_k) + G_k w_k$.

4.5 The KF Equations – Summary

a. The basic equations

Initial Conditions:

$$\hat{x}_0^- = \overline{x}_0 \triangleq E(x_0), \quad P_0^- = P_0 \triangleq \operatorname{cov}(x_0).$$

Measurement update:

$$\hat{x}_k^+ = \hat{x}_k^- + K_k(z_k - H_k \hat{x}_k^-)$$

$$P_k^+ = P_k^- - K_k H_k P_k^-$$

where K_k is the Kalman gain matrix:

$$K_k = P_k^- H_k^T (H_k P_k^- H_k^T + R_k)^{-1}$$
.

Time update:

$$\hat{x}_{k+1}^{-} = F_k \hat{x}_k^{+} \ [+B_k u_k]$$

$$P_{k+1}^{-} = F_k P_k^{+} F_k^{T} + G_k Q_k G_k^{T}$$

Note: The measurement update above is valid for any gain matrix K_k , not just the optimal one.

b. One-step iterations

The two-step equations may obviously be combined into a one-step update which computes \hat{x}_{k+1}^+ from \hat{x}_k^+ (or \hat{x}_{k+1}^- from \hat{x}_k^-). For example,

$$\hat{x}_{k+1}^{-} = F_k \hat{x}_k^{-} + F_k K_k (z_k - H_k \hat{x}_k^{-})
P_{k+1}^{-} = F_k (P_k^{-} - K_k H_k P_k^{-}) F_k^{T} + G_k Q_k G_k^{T}.$$

 $L_k \triangleq F_k K_k$ is also known as the Kalman gain.

The iterative equation for P_k^- is called the (discrete-time, time-varying) Matrix Riccati Equation.

c. Other important quantities

The measurement prediction, the innovations process, and the innovations covariance are given by

$$\hat{z}_k \triangleq E(z_k|Z_{k-1}) = H_k \hat{x}_k^- (+B_k u_k)
\tilde{z}_k \triangleq z_k - \hat{z}_k = H_k \tilde{x}_k^-
M_k \triangleq \text{cov}(\tilde{z}_k) = H_k P_k^- H_k^T + R_k$$

Note that $K_k = P_k^- H_k^T M_k^{-1}$.

d. Alternative Forms for the measurement covariance update (general gain)

Evidently,

$$P_k^+ = P_k^- - K_k H_k P_k^- = (I - K_k H_k) P_k^-.$$

A more significant variation is given by the **Joseph form.** Noting that

$$x_k - \hat{x}_k^+ = (I - K_k H_k)(x_k - \hat{x}_k^-) - K_k v_k$$

it follows immediately that

$$P_k^+ = (I - K_k H_k) P_k^- (I - K_k H_k)^T + K_k R_k K_k^T$$

This form may be more computationally expensive, but has the following advantages:

- Numerically, it is guaranteed to preserve positive-definiteness $(P_k^+ > 0)$.
- As mentioned, it holds for any gain K_k (not just the optimal) that may be used in the measurement update $\hat{x}_k^+ = \hat{x}_k^- + K_k \tilde{z}_k$.

e. Alternative Forms for the measurement covariance update (optimal gain)

Substituting the *optimal* gain K_k in the expression for P_k^+ , we obtain a symmetric expressions:

$$P_k^+ = P_k^- - P_k^- H_k^T M_k^{-1} H_k P_k^-$$
$$= P_k^- - K_k M_k K_k^T$$

It can also be verified that $K_k = P_k^+ H_k^T R_k^{-1}$.

The Information Form: The covariance matrix update for the optimal measurement update also satisfies

$$(P_k^+)^{-1} = (P_k^-)^{-1} + H_k^T R_k^{-1} H_k$$

This equivalence may obtained via the useful Matrix Inversion Lemma:

$$(A + BCD)^{-1} = A^{-1} - A^{-1}B(DA^{-1}B + C^{-1})^{-1}DA^{-1}$$

where A, C are square nonsingular matrices (possibly of different size).

 P^{-1} is called the *Information Matrix*. It forms the basis for the "information filter", which only computes the inverse covariances.

f. Relation to Deterministic Observers

The one-step recursion for \hat{x}_k^- is similar in form to the algebraic state observer from control theory.

Given a (deterministic) system:

$$x_{k+1} = F_k x_k + B_k u_k$$
$$z_k = H_k x_k$$

a state observer is defined by

$$\hat{x}_{k+1} = F_k \hat{x}_k + B_k u_k + L_k (z_k - H_k \hat{x}_k)$$

where L_k are gain matrices to be chosen, with the goal of obtaining $\tilde{x}_k \triangleq (x_k - \hat{x}_k) \rightarrow 0$ as $k \rightarrow \infty$.

Since

$$\tilde{x}_{k+1} = (F_k - L_k H_k) \tilde{x}_k \,,$$

we need to choose L_k so that the linear system defined by $A_k = (F_k - L_k H_k)$ is asymptotically stable.

This is possible when the original system is *detectable*.

The Kalman gain automatically satisfies this stability requirement (whenever the detectability condition is satisfied).