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4 Derivations of the Discrete-Time Kalman Filter

We derive here the basic equations of the Kalman filter (KF), for discrete-time
linear systems. We consider several derivations under different assumptions and

viewpoints:

e For the Gaussian case, the KF is the optimal (MMSE) state estimator.

e In the non-Gaussian case, the KF is derived as the best linear (LMMSE) state

estimator.

e We also provide a deterministic (least-squares) interpretation.

We start by describing the basic state-space model.
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4.1 The Stochastic State-Space Model
A discrete-time, linear, time-varying state space system is given by:

Tpp1 = Frrp+ Grwy (state evolution equation)

2z, = Hixzp + vy (measurement equation)

for k > 0 (say), and initial conditions x.
Here:

— F}, Gy, Hj are known matrices.

— x1, € IR" is the state vector.

— wy € IR™ is the state noise.

— 2z € IR™ is the observation vector.

— vy the observation noise.

— The initial conditions are given by x(, usually a random variable.

The noise sequences (wy, vg) and the initial conditions xy are stochastic processes

with known distributions.

The Markovian model

Recall that a stochastic process { Xy} is a Markov process if

P( Xkt | Xby Xi—1, - ) = (X1 ] X)) -

For the state z; to be Markovian, we need the following assumption.

Assumption A1l: The state-noise process {wy} is white in the strict sense, namely
all wy’s are independent of each other. Furthermore, this process is independent of

Zg.
The following is then a simple exercise:

Proposition: Under Al, the state process {xy, k > 0} is a Markov process.

Note:

e Linearity is not essential: The Markov property follows from Al also for the

nonlinear state equation xp1 = f(xg, wg).
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e The measurement process z; is usually not Markov.

e The pdf of the state can (in principle) be computed recursively via the following
(Chapman-Kolmogorov) equation:

P(Thy1) = /p(ﬂfk+1|$k)z9($k)d$k-

where p(xi1|zg) is determined by p(wy).

The Gaussian model

e Assume that the noise sequences {wy}, {vx} and the initial conditions x, are

jointly Gaussian.

o It easily follows that the processes {zy} and {z;} are (jointly) Gaussian as
well.

e If; in addition, A1 is satisfied (namely {wy} is white and independent of z),
then xj is a Markov process.

This model is often called the Gauss-Markov Model.




Second-Order Model

We often assume that only the first and second order statistics of the noise is known.

Consider our linear system:

Thy1 = Fkl'k + kak, k > 0

2 = Hpxg + vy,

under the following assumptions:

e wy a 0-mean white noise: E(wy) = 0, cov(wy, w;) = Qrlx-
e v a 0-mean white noise: E(vg) = 0, cov(vg, v;) = Ridg.
e cov(wy,v;) = 0: uncorrelated noise.

e 1 is uncorrelated with the other noise sequences.

denote Ty = E(xg), cov(xg) = P.
We refer to this model as the standard second-order model.
It is sometimes useful to allow correlation between v, and wy:
cov(wg, v) = E(wpv)) = Spop -

This gives the second-order model with correlated noise.

A short-hand notation for the above correlations:

Wi wy Qro Skom 0
COV( Vi s Ul ) = S]€T5kl Rkékl 0
o Zo 0 0 R

Note that the Gauss-Markov model is a special case of this model.



Mean and covariance propagation

For the standard second-order model, we easily obtain recursive formulas for the

mean and covariance of the state, when no measurement is given.

e The mean obviously satisfies:

Th1 = L7y + Grwy, = Fixy

e Consider next the covariance:
Pk £ E((mk — fk)(.’ﬂk — T)T) .

Note that zy11 — Try1 = Fi(zr — Tx) + Grwy, and wy and xy, are uncorrelated
(why?). Therefore
Pri1 = By P FL + GLQiGY

This equation is in the form of a Lyapunov difference equation.

e Since zp = Hpx, + vg, it is now easy to compute its covariance:
COV(Zk) = HkPng + Rk,
and similarly for the joint covariances of (xy, zy).

e In the Gaussian case, the pdf of x is completely specified by the mean and

covariance: zy ~ N (T, Py).



4.2 The KF for the Gaussian Model

Consider the linear Gaussian (or Gauss-Markov) model

Try1 = Frep+ G, k>0

2y = Hpwg, +ug

where:

e {wy} and {vx} are independent, zero-mean Gaussian white processes with

covariances
E(UkUlT) = Ri0p, E(wkwlT) = Qr0m

e The initial state x( is a Gaussian RV, independent of the noise processes, with
T ~~ N(fo, Po)

Let Zy = (20,...,2k). Our goal is to compute recursively the following optimal
(MMSE) estimator of xy:

Also define the one-step predictor of xy:
iy = Bpper = E(v|Zi-1)
and the respective covariance matrices:

P,:r = P]ﬂk = E{$k - i’z)(‘fk - ‘%$>T|Zk}

Note that P (and similarly P, ) can be viewed in two ways:

(i) It is the covariance matrix of the (posterior) estimation error, ey = zy — @ .
In particular, MMSE(Z}") = trace(P,").

(ii) It is the covariance matrix of the “conditional RV (xj|Zy)”, namely an RV

with distribution p(xx|Zx) (since Z; is its mean).
Finally, denote Py = Py, &5 = .

Recall the formulas for conditioned Gaussian vectors:
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e If X and X are jointly Gaussian, then p,, ~ N(m,X), with

m=mg, + EWEZ_ZI(Z —-m,),

Y= Ezm - Zmzzzzlzzm .

e The same formulas hold when everything is conditioned, in addition, on an-

other random vector.

According to the terminology above, we say in this case that the conditional RV
(X|z) is Gaussian.

Proposition: For the model above, all random processes (noises, zy, zx) are jointly

Gaussian.

Proof: All can be expressed as linear combinations of the noise seqeunces, which

are jointly Gaussian (why?). O
It follows that (zx|Z,,) is Gaussian (for any k, m). In particular:



Filter Derivation

Suppose, at time k, that (2, , P, ) is given.

We shall compute (z}}, P;") and (&, , P, ), using the following two steps.

Measurement update step: Since 2z, = Hpxp + v, then the conditional vector

(( )\Zk_l) is Gaussian, with mean and covariance:

2k
Ty,
A )
Hkl‘k

My & H,.P; Hl + Ry,

Py Py H{
H P, M,

where

To compute (zx|Zx) = (x|zk, Zk—1), we apply the above formula for conditional
expectation of Gaussian RVs, with everything pre-conditioned on Z;_;. It follows

that (zx|Zy) is Gaussian, with mean and covariance:
if £ B(x|Zy) = & + Py HE (M) ™ (2x — Hydy)

P £ cov(a|Zy) = Py — Py Hy (My) ™ Hy Py

Time update step Recall that x4 = Fpxp + Grwy. Further, xp and wy are inde-

pendent given Z; (why?). Therefore,
i1 = Elow|Zy) = Frif

Py & cov(zp|Ze) = BB EL + GrQiGY



Remarks:

1. The KF computes both the estimate #; and its MSE/covariance P, (and
similarly for ).
Note that the covariance computation is needed as part of the estimator com-
putation. However, it is also of independent importance as is assigns a measure

of the uncertainly (or confidence) to the estimate.

2. Tt is remarkable that the conditional covariance matrices P and P, do not de-
pend on the measurements {z;}. They can therefore be computed in advance,

given the system matrices and the noise covariances.
3. As usual in the Gaussian case, P;’ is also the unconditional error covariance:
+_ Sy o+ ST
P = cov(zy — &) = El(wr — ) (we — 2)7 ]

In the non-Gaussian case, the unconditional covariance will play the central

role as we compute the LMMSE estimator.

4. Suppose we need to estimate some s, = Cxy.

Then the optimal estimate is §; = E(si|Z;) = O .
5. The following “output prediction error”
% £ 2p — Hydy = 21 — B2 Z1)

is called the innovation, and {Z;} is the important innovations process.
Note that M, = HkPk_HE + Ry is just the covariance of Zj.



4.3 Best Linear Estimator — Innovations Approach

a. Linear Estimators

Recall that the best linear (or LMMSE) estimator of X given Y is an estimator of
the form & = Ay + b, which minimizes the mean square error E(||z — #||?). It is
given by:

T=my;+ nyZy_yl(y —my)

where ¥, and ¥, are the covariance matrices. It easily follows that & is unbiased:

E(&) = m,, and the corresponding (minimal) error covariance is
cov(z —2) = B(x — 2)(x — 2)T = S0 — ZzyE;ylEfy

We shall find it convenient to denote this estimator & as EZ(z|y). Note that this is

not the standard conditional expectation.

Recall further the orthogonality principle:

E((z — B*(z]y))L(y)) = 0
for any linear function L(y) of y.

The following property will be most useful. It follows simply by using y = (y1; y2)

in the formulas above:
e Suppose cov(yp,y2) = 0. Then
E"(zly1, y2) = E"(z]y1) + [E*(ly2) — E(2)].
Furthermore,

cov(z — EX x|y, 1)) = (Cow — Zay, 200 B0 ) = 8,51 v

TYL = y1y1 —ay1 TY2 = Yyay2 — Y2 *
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b. The innovations process

Consider a discrete-time stochastic process {zx}r>0. The (wide-sense) innovations

process is defined as
%= 2 — B (2] Zi-)

where Zj_1 = (zo;- - 2x_1). The innovation RV Z; may be regarded as containing

only the new statistical information which is not already in Z_;.
The following properties follow directly from those of the best linear estimator:
(2) Z is a linear function of Zj.

(3) Thus, cov(Zy, %) = E(Zz]) =0 for k # L.

This implies that the innovations process is a zero-mean white noise process.

Denote Zk = (Zo;- - ; Zk). It is easily verified that Z and Zk are linear functions of
each other. This implies that EX(z|Z;,) = E*(x|Z;) for any RV z.

It follows that (taking F(z) = 0 for simplicity):
EY(2)Zy) = B"(x|Z)

= ( |Zk 1)+E .T|Zk Z I|Zl
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c. Derivation of the KF equations

We proceed to derive the Kalman filter as the best linear estimator for our lin-
ear, non-Gaussian model. We slightly generalize the model that was treated so far
by allowing correlation between the state noise and measurement noise. Thus, we

consider the model

Thy1 — Fkxk + kak, k Z 0

2y = Hpz, +uy,

with [wy; vg] a zero-mean white noise sequence with covariance

" ] af ) = [ o

Okt -
ST R, kl

o has mean 7, covariance Fy, and is uncorrelated with the noise sequence.

We use here the following notation:

Zy = (Zo;"‘ ;Zk)
u%k|k—1 = EL(SUk\qu) i'k|k = EL($k|Zk)

Tpp—1 = T — Tpjp—1 Tpik = Tk — Th|k
Piji—1 = cov(Tpjp—1) Py, = cov(Tpx)

and defne the innovations process
~ A L N
=z — K (Zk’Zk:—l) = Zr — Hkmk\kfl-

Note that

Zr = HpZpp—1 + vg .
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Measurement update: From our previous discussion of linear estimation and inno-

vations,

= EL(J]k|Zk_1) + EL(l‘k|§k) - E([Ek)

This relation is the basis for the innovations approach. The rest follows essentially

by direct computations, and some use of the orthogonality principle. First,

E*(z1|21) — E(x1) = cov(ag, Z)cov(Zr) 2.
The two covariances are next computed:

COV([L’k, 2k) = COV(.Tk, Hk.fk‘k,1 + Uk) = Pk|k,1Hg,

where F (wkig‘ w_1) = Prjr—1 follows by orthogonality, and we also used the fact that

v and xy are not correlated. Similarly,
COV(%k) = COV(kak“g_l -+ Uk) = HkPkUc—lH]? + Ry £ M,
By substituting in the estimator expression we obtain
~ oA Tar—1~
Tk = Tpjp—1 + Prpp—1Hy, My, 2y,
Time update: This step is less trivial than before due to the correlation between vy,

and wg. We have

i’k+1|k = EL(ZEk+1|Zk) = EL(Fk.’Ek + kak;|Zk)

In the last equation we used E*(wy|Z,_1) = 0 since wy, is uncorrelated with Z;_;.
Thus

Pepp = Fadugr + GrBE(wipZ])cov(Z) 2

= Fkik‘k + GkSkMk_lgk

where E(wké,?) = E(wkvg) = Sk follows from gk = Hki'k“g_l + Vg.
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Combined update: Combining the measurement and time updates, we obtain the

one-step update for Zy,_;:
Trpape = FrZpp—1 + K2y
where
A —
Ky £ (FoPys-1Hi, + GpSip) M,

2k = zp — HypZpp—
My = HyPyoHE + Ry

Covariance update: The relation between Py, and Py,_; is exactly as before.

The recursion for Py, is most conveniently obtained in terms of Py,_; directly.

From the previous relations we obtain
Trpap = (Fr — KpHy) g1 + Grwg — Ky
Since I}, is uncorrelated with w;, and vy,

Peip = (Fy — KpHy) Py (Fy — K Hy)" + GoQrGY
+ Ky R K — (GpSk K + K STGY)

This completes the filter equations for this case.
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Addendum: A Hilbert space interpretation

The definitions and results concerning linear estimators can be nicely interpreted in

terms of a Hilbert space formulation.
Consider for simplicity all RVs in this section to have 0 mean.

Recall that a Hilbert space is a (complete) inner-product space. That is, it is a linear
vector space V', with a real-valued inner product operation (vy, v9) which is bi-linear,

symmetric, and non-degenerate ((v,v) = 0 iff v = 0). (Completeness means that

H2 —

every Cauchy sequence has a limit.) The derived norm is defined as |[v]|* = (v,v).

The following facts are standard:

1. A subspace S is a linearly-closed subset of V. Alternatively, it is the linear

span of some set of vectors {v,}.

2. The orthogonal projection Ilgv of a vector v unto the subspace S is the closest
element to v in S, i.e., the vector v" € S which minimizes ||v — ¢'||. Such a
vector exists and is unique, and satisfies (v — Igv) L S, i.e., (v —Ilgv,s) =0
for s € S.

3. If S =span{si, ..., s}, then Igv = Zle «;8;, where
[ala s ,Olk-] = [(Ua 81>a sy <Ua Sk)][('sia 8j>i,j:1...k]_1

4. If S =5 & Sy (S is the direct sum of two orthogonal subspaces S; and Sy),
then
HSU = Hslv + HSQU .

If {s1,...,sx} is an orthogonal basis of S, then

k

IECES Z@% si)(si,5i) 5

i=1

5. Given a set of (independent) vectors {vy, vy ...}, the following Gram-Schmidt

procedure provides an orthogonal basis:

UV = Uy _Hspan{vl...vk,l}vk
k—1
S\~ o~
= Uk_g <Uk7?1i>(vz'7?1i> U;
=1
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We can fit the previous results on linear estimation to this framework by noting the

following correspondence:

e Our Hilbert space is the space of all zero-mean random variables X (on a
given probability space) which are square-integrable: F(X?) = 0. The inner
product in defined as (X,Y) = E(XY).

e The optimal linear estimator EL (x| Zy), with Z), = (20, ..., 2), is the orthog-
onal projection of the vector zj on the subspace spanned by Z;. (If zj is

vector-valued, we simply consider the projection of each element separately.)

e The innovations process {z;} is an orthogonalized version of {z}.

The Hilbert space formulation provides a nice insight, and can also provide useful
technical results, especially in the continuous-time case. However, we shall not go

deeper into this topic.
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4.4 The Kalman Filter as a Least-Squares Problem

Consider the following deterministic optimization problem.

The cost function (to be minimized):

1
Jk = 5 (Qfg — fo)Tpoil(l'o — TQ)
1 k
+§ ;(Z’l — lel)TRfl(Zl — Hll'l)
1 k—1
+§ wlTQl_lwl
=0

under constraints:

SC[+1:FZSCI+G1U}[, lIO,l,...,k‘—l

The variables are:

oy - Ty Woy .o Wg—1 -

Here Ty, {2z} are given vectors, and Py, R;, (); symmetric positive-definite matrices.

Let (x(()k), e ,:E,(f) ) denote the optimal solution of this problem. We claim that :E,(f)

is given by exactly the same equations as Ty in the corresponding KF problem.

This claim can be established by writing explicitly the least-squares solution for
k — 1 and k, and manipulating the matrix expressions. We will take here a quicker

route, using the Gaussian insight.
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Theorem The minimizing solution (:cgk), e ,l‘,(ck)) of the above LS problem is the

maximizer of the conditional probability (that is, the M AP estimator):
p(zo, ... x| Zy), wrt(x,, ..., Tx)
related to the Gaussian model:

Th1 = Fprp+ Grwg, x0~ N(To, )

2y = Hyxp+v,, w,~ N(0,Q), vy ~ N(0, P)

with wy, v, white and independent of xg.

Proof: Write down the distribution p(zg ...z, Zx).

Immediate Consequence: Since for Gaussian RV’s MAP=MMSE, then (xy, ..., x;)®

are equivalent to the expected means: In particular, x,(f) =z}

Remark: The above theorem (but not the last consequence) holds true even for the

non-linear model: z 1 = Fi(zx) + Grwy.
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4.5 The KF Equations — Summary

a. The basic equations

Initial Conditions:
i’a :_QéE<I0), PJ:POéCOV<LUO).

Measurement update:

Pl =P, — K H,P;
where K}, is the Kalman gain matrix:

Ky = P, H} (Hy P, HY + Ry) ™'

Time update:
Ty = Bt [+Brug

P, = FyP F + GLQiGy,

Note: The measurement update above is valid for any gain matrix K}, not just the

optimal one.

b. One-step iterations
The two-step equations may obviously be combined into a one-step update which
computes &, from & (or 2, from ;).
For example,
P, = F(P; — K H P, )F + GQuGY
L, & F, K, is also known as the Kalman gain.

The iterative equation for P, is called the (discrete-time, time-varying) Matriz

Riccati Equation.

c. Other important quantities
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The measurement prediction, the innovations process, and the innovations covari-

ance are given by

ék e E(zk|Zk,1) = Hki]; (—l—Bkuk)
2k £ Zk — ékz = Hkiﬁ;
My = cov(Z) = Hy P, HE + Ry

Note that K = P, HI M, "

d. Alternative Forms for the measurement covariance update (general
gain)
Evidently,

Pf =P  — K Hy P, = (I — K;.Hy) P, .

A more significant variation is given by the Joseph form.
Noting that
T — JAIZ_ = (I — Kka)(ZL'k - Z)AS;) - Kkl}k

it follows immediately that
P = (I - KyH,) Py (I — K Hy,)" + KR K}
This form may be more computationally expensive, but has the following advan-

tages:

e Numerically, it is guaranteed to preserve positive-definiteness (P, > 0).

e As mentioned, it holds for any gain K} (not just the optimal) that may be

used in the measurement update i;“ = o, + Kz

e. Alternative Forms for the measurement covariance update (optimal

gain)

Substituting the optimal gain K}, in the expression for P/, we obtain a symmetric

expressions:
Pl = P, — P HM_'H,P,
= Py — KpyMyK}
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It can also be verified that K, = P,'HI'R;".

The Information Form: The covariance matrix update for the optimal measurement

update also satisfies
(PO~ = (P0) ™ + H{ R Hy,

This equivalence may obtained via the useful Matriz Inversion Lemma:
(A+BCD)'=A"'—-A'B(DA'B+C ) 'DA™

where A, C' are square nonsingular matrices (possibly of different size).

P~1is called the Information Matriz. It forms the basis for the “information filter”,

which only computes the inverse covariances.

f. Relation to Deterministic Observers

The one-step recursion for Z, is similar in form to the algebraic state observer from
control theory.

Given a (deterministic) system:

Tpt1 = Iy, + Brug

2z = Hpxy
a state observer is defined by
Tpy1 = FipZy + Brug + Li(2 — Hydy)
where L, are gain matrices to be chosen, with the goal of obtaining z, =S (rp—Tx) —

0as k — oo.

Since
Tpr1 = (Fy — L Hy) 2y,

we need to choose Ly so that the linear system defined by A, = (Fy — LpHy) is
asymptotically stable.

This is possible when the original system is detectable.

The Kalman gain automatically satisfies this stability requirement (whenever the

detectability condition is satisfied).
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