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4 Derivations of the Discrete-Time Kalman Filter

We derive here the basic equations of the Kalman filter (KF), for discrete-time

linear systems. We consider several derivations under different assumptions and

viewpoints:

• For the Gaussian case, the KF is the optimal (MMSE) state estimator.

• In the non-Gaussian case, the KF is derived as the best linear (LMMSE) state

estimator.

• We also provide a deterministic (least-squares) interpretation.

We start by describing the basic state-space model.
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4.1 The Stochastic State-Space Model

A discrete-time, linear, time-varying state space system is given by:

xk+1 = Fkxk +Gkwk (state evolution equation)

zk = Hkxk + vk (measurement equation)

for k ≥ 0 (say), and initial conditions x0.

Here:

– Fk, Gk, Hk are known matrices.

– xk ∈ IRn is the state vector.

– wk ∈ IRnw is the state noise.

– zk ∈ IRm is the observation vector.

– vk the observation noise.

– The initial conditions are given by x0, usually a random variable.

The noise sequences (wk, vk) and the initial conditions x0 are stochastic processes

with known distributions.

The Markovian model

Recall that a stochastic process {Xk} is a Markov process if

p(Xk+1|Xk, Xk−1, . . . ) = p(Xk+1|Xk) .

For the state xk to be Markovian, we need the following assumption.

Assumption A1: The state-noise process {wk} is white in the strict sense, namely

all wk’s are independent of each other. Furthermore, this process is independent of

x0.

The following is then a simple exercise:

Proposition: Under A1, the state process {xk, k ≥ 0} is a Markov process.

Note:

• Linearity is not essential: The Markov property follows from A1 also for the

nonlinear state equation xk+1 = f(xk, wk).
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• The measurement process zk is usually not Markov.

• The pdf of the state can (in principle) be computed recursively via the following

(Chapman-Kolmogorov) equation:

p(xk+1) =

∫
p(xk+1|xk)p(xk)dxk .

where p(xk+1|xk) is determined by p(wk).

The Gaussian model

• Assume that the noise sequences {wk}, {vk} and the initial conditions x0 are

jointly Gaussian.

• It easily follows that the processes {xk} and {zk} are (jointly) Gaussian as

well.

• If, in addition, A1 is satisfied (namely {wk} is white and independent of x0),

then xk is a Markov process.

This model is often called the Gauss-Markov Model.
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Second-Order Model

We often assume that only the first and second order statistics of the noise is known.

Consider our linear system:

xk+1 = Fkxk +Gkwk , k ≥ 0

zk = Hkxx + vk ,

under the following assumptions:

• wk a 0-mean white noise: E(wk) = 0, cov(wk, wl) = Qkδkl.

• vk a 0-mean white noise: E(vk) = 0, cov(vk, vl) = Rkδkl.

• cov(wk, vl) = 0: uncorrelated noise.

• x0 is uncorrelated with the other noise sequences.

denote x0 = E(x0), cov(x0) = P0.

We refer to this model as the standard second-order model.

It is sometimes useful to allow correlation between vk and wk:

cov(wk, vl) ≡ E(wkv
T
l ) = Skδkl .

This gives the second-order model with correlated noise.

A short-hand notation for the above correlations:

cov(

 wk

vk

x0

 ,

 wl

vl

x0

) =
 Qkδkl Skδkl 0

ST
k δkl Rkδkl 0

0 0 P0


Note that the Gauss-Markov model is a special case of this model.
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Mean and covariance propagation

For the standard second-order model, we easily obtain recursive formulas for the

mean and covariance of the state, when no measurement is given.

• The mean obviously satisfies:

xk+1 = Fkxk +Gkwk = Fkxk

• Consider next the covariance:

Pk , E((xk − xk)(xk − x)T ) .

Note that xk+1 − xk+1 = Fk(xk − xk) +Gkwk, and wk and xk are uncorrelated

(why?). Therefore

Pk+1 = FkPkF
T
k +GkQkG

T
k .

This equation is in the form of a Lyapunov difference equation.

• Since zk = Hkxx + vk, it is now easy to compute its covariance:

cov(zk) = HkPkH
T
k +Rk ,

and similarly for the joint covariances of (xk, zk).

• In the Gaussian case, the pdf of xk is completely specified by the mean and

covariance: xk ∼ N(xk, Pk).
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4.2 The KF for the Gaussian Model

Consider the linear Gaussian (or Gauss-Markov) model

xk+1 = Fkxk +Gkwk , k ≥ 0

zk = Hkxx + vk

where:

• {wk} and {vk} are independent, zero-mean Gaussian white processes with

covariances

E(vkv
T
l ) = Rkδkl , E(wkw

T
l ) = Qkδkl

• The initial state x0 is a Gaussian RV, independent of the noise processes, with

x0 ∼ N(x0, P0).

Let Zk = (z0, . . . , zk). Our goal is to compute recursively the following optimal

(MMSE) estimator of xk:

x̂+
k ≡ x̂k|k , E(xk|Zk) .

Also define the one-step predictor of xk:

x̂−
k ≡ x̂k|k−1 , E(xk|Zk−1)

and the respective covariance matrices:

P+
k ≡ Pk|k , E{xk − x̂+

k )(xk − x̂+
k )

T |Zk}
P−
k ≡ Pk|k−1 , E{xk − x̂−

k )(xk − x̂−
k )

T |Zk−1} .

Note that P+
k (and similarly P−

k ) can be viewed in two ways:

(i) It is the covariance matrix of the (posterior) estimation error, ek = xk − x̂+
k .

In particular, MMSE(x̂+
k ) = trace(P+

k ).

(ii) It is the covariance matrix of the “conditional RV (xk|Zk)”, namely an RV

with distribution p(xk|Zk) (since x̂+
k is its mean).

Finally, denote P−
0 , P0, x̂−

0 , x0 .

Recall the formulas for conditioned Gaussian vectors:
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• If X and X are jointly Gaussian, then px|z ∼ N(m,Σ), with

m = mx + ΣxzΣ
−1
zz (z −mz) ,

Σ = Σxx − ΣxzΣ
−1
zz Σzx .

• The same formulas hold when everything is conditioned, in addition, on an-

other random vector.

According to the terminology above, we say in this case that the conditional RV

(X|z) is Gaussian.

Proposition: For the model above, all random processes (noises, xk, zk) are jointly

Gaussian.

Proof: All can be expressed as linear combinations of the noise seqeunces, which

are jointly Gaussian (why?).

It follows that (xk|Zm) is Gaussian (for any k, m). In particular:

(xk|Zk) ∼ N(x̂+
k , P

+
k ) , (xk|Zk−1) ∼ N(x̂−

k , P
−
k ) .
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Filter Derivation

Suppose, at time k, that (x̂−
k , P

−
k ) is given.

We shall compute (x̂+
k , P

+
k ) and (x̂−

k+1, P
−
k+1), using the following two steps.

Measurement update step: Since zk = Hkxk + vk, then the conditional vector

(

(
xk

zk

)
|Zk−1) is Gaussian, with mean and covariance:

[
x̂−
k

Hkx̂
−
k

]
,

[
P−
k P−

k HT
k

HkP
−
k Mk

]

where

Mk , HkP
−
k HT

k +Rk .

To compute (xk|Zk) = (xk|zk, Zk−1), we apply the above formula for conditional

expectation of Gaussian RVs, with everything pre-conditioned on Zk−1. It follows

that (xk|Zk) is Gaussian, with mean and covariance:

x̂+
k , E(xk|Zk) = x̂−

k + P−
k HT

k (Mk)
−1(zk −Hkx̂

−
k )

P+
k , cov(xk|Zk) = P−

k − P−
k HT

k (Mk)
−1HkP

−
k

Time update step Recall that xk+1 = Fkxk + Gkwk. Further, xk and wk are inde-

pendent given Zk (why?). Therefore,

x̂−
k+1 , E(xk+1|Zk) = Fkx̂

+
k

P−
k+1 , cov(xk+1|Zk) = FkP

+
k F T

k +GkQkG
T
k
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Remarks:

1. The KF computes both the estimate x̂+
k and its MSE/covariance P+

k (and

similarly for x̂−
k ).

Note that the covariance computation is needed as part of the estimator com-

putation. However, it is also of independent importance as is assigns a measure

of the uncertainly (or confidence) to the estimate.

2. It is remarkable that the conditional covariance matrices P+
k and P−

k do not de-

pend on the measurements {zk}. They can therefore be computed in advance,

given the system matrices and the noise covariances.

3. As usual in the Gaussian case, P+
k is also the unconditional error covariance:

P+
k = cov(xk − x̂+

k ) = E[(xk − x̂+
k )(xk − x̂+

k )
T ] .

In the non-Gaussian case, the unconditional covariance will play the central

role as we compute the LMMSE estimator.

4. Suppose we need to estimate some sk , Cxk.

Then the optimal estimate is ŝk = E(sk|Zk) = Cx̂+
k .

5. The following “output prediction error”

z̃k , zk −Hkx̂
−
k ≡ zk − E(zk|Zk−1)

is called the innovation, and {z̃k} is the important innovations process.

Note that Mk = HkP
−
k HT

k +Rk is just the covariance of z̃k.
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4.3 Best Linear Estimator – Innovations Approach

a. Linear Estimators

Recall that the best linear (or LMMSE) estimator of X given Y is an estimator of

the form x̂ = Ay + b, which minimizes the mean square error E(∥x − x̂∥2). It is

given by:

x̂ = mx + ΣxyΣ
−1
yy (y −my)

where Σxy and Σyy are the covariance matrices. It easily follows that x̂ is unbiased:

E(x̂) = mx, and the corresponding (minimal) error covariance is

cov(x− x̂) = E(x− x̂)(x− x̂)T = Σxx − ΣxyΣ
−1
yy Σ

T
xy

We shall find it convenient to denote this estimator x̂ as EL(x|y). Note that this is

not the standard conditional expectation.

Recall further the orthogonality principle:

E((x− EL(x|y))L(y)) = 0

for any linear function L(y) of y.

The following property will be most useful. It follows simply by using y = (y1; y2)

in the formulas above:

• Suppose cov(y1, y2) = 0. Then

EL(x|y1, y2) = EL(x|y1) + [EL(x|y2)− E(x)] .

Furthermore,

cov(x− EL(x|y1, y2)) = (Σxx − Σxy1Σ
−1
y1y1

ΣT
xy1

)− Σxy2Σ
−1
y2y2

ΣT
xy2

.
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b. The innovations process

Consider a discrete-time stochastic process {zk}k≥0. The (wide-sense) innovations

process is defined as

z̃k = zk − EL(zk|Zk−1) ,

where Zk−1 = (z0; · · · zk−1). The innovation RV z̃k may be regarded as containing

only the new statistical information which is not already in Zk−1.

The following properties follow directly from those of the best linear estimator:

(1) E(z̃k) = 0, and E(z̃kZ
T
k−1) = 0.

(2) z̃k is a linear function of Zk.

(3) Thus, cov(z̃k, z̃l) = E(z̃kz̃
T
l ) = 0 for k ̸= l.

This implies that the innovations process is a zero-mean white noise process.

Denote Z̃k = (z̃0; · · · ; z̃k). It is easily verified that Zk and Z̃k are linear functions of

each other. This implies that EL(x|Zk) = EL(x|Z̃k) for any RV x.

It follows that (taking E(x) = 0 for simplicity):

EL(x|Zk) = EL(x|Z̃k)

= EL(x|Z̃k−1) + EL(x|z̃k) =
k∑

l=0

EL(x|z̃l)
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c. Derivation of the KF equations

We proceed to derive the Kalman filter as the best linear estimator for our lin-

ear, non-Gaussian model. We slightly generalize the model that was treated so far

by allowing correlation between the state noise and measurement noise. Thus, we

consider the model

xk+1 = Fkxk +Gkwk , k ≥ 0

zk = Hkxx + vk ,

with [wk; vk] a zero-mean white noise sequence with covariance

E(

[
wk

vk

]
[wT

l , v
T
l ]) =

[
Qk Sk

ST
k Rk

]
δkl .

x0 has mean x0, covariance P0, and is uncorrelated with the noise sequence.

We use here the following notation:

Zk = (z0; · · · ; zk)
x̂k|k−1 = EL(xk|Zk−1) x̂k|k = EL(xk|Zk)

x̃k|k−1 = xk − x̂k|k−1 x̃k|k = xk − x̂k|k

Pk|k−1 = cov(x̃k|k−1) Pk|k = cov(x̃k|k)

and defne the innovations process

z̃k , zk − EL(zk|Zk−1) = zk −Hkx̂k|k−1.

Note that

z̃k = Hkx̃k|k−1 + vk .
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Measurement update: From our previous discussion of linear estimation and inno-

vations,

x̂k|k = EL(xk|Zk) = EL(xk|Z̃k)

= EL(xk|Z̃k−1) + EL(xk|z̃k)− E(xk)

This relation is the basis for the innovations approach. The rest follows essentially

by direct computations, and some use of the orthogonality principle. First,

EL(xk|z̃k)− E(xk) = cov(xk, z̃k)cov(z̃k)
−1z̃k.

The two covariances are next computed:

cov(xk, z̃k) = cov(xk, Hkx̃k|k−1 + vk) = Pk|k−1H
T
k ,

where E(xkx̃
T
k|k−1) = Pk|k−1 follows by orthogonality, and we also used the fact that

vk and xk are not correlated. Similarly,

cov(z̃k) = cov(Hkx̃k|k−1 + vk) = HkPk|k−1H
T
k +Rk , Mk

By substituting in the estimator expression we obtain

x̂k|k = x̂k|k−1 + Pk|k−1H
T
k M

−1
k z̃k

Time update: This step is less trivial than before due to the correlation between vk

and wk. We have

x̂k+1|k = EL(xk+1|Z̃k) = EL(Fkxk +Gkwk|Z̃k)

= Fkx̂k|k +GkE
L(wk|z̃k)

In the last equation we used EL(wk|Z̃k−1) = 0 since wk is uncorrelated with Z̃k−1.

Thus

x̂k+1|k = Fkx̂k|k +GkE(wkz̃
T
k )cov(z̃k)

−1z̃k

= Fkx̂k|k +GkSkM
−1
k z̃k

where E(wkz̃
T
k ) = E(wkv

T
k ) = Sk follows from z̃k = Hkx̃k|k−1 + vk.
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Combined update: Combining the measurement and time updates, we obtain the

one-step update for x̂k|k−1:

x̂k+1|k = Fkx̂k|k−1 +Kkz̃k

where
Kk , (FkPk|k−1Hk +GkSk)M

−1
k

z̃k = zk −Hkx̂k|k−1

Mk = HkPk|k−1H
T
k +Rk .

Covariance update: The relation between Pk|k and Pk|k−1 is exactly as before.

The recursion for Pk+1|k is most conveniently obtained in terms of Pk|k−1 directly.

From the previous relations we obtain

x̃k+1|k = (Fk −KkHk)x̃k|k−1 +Gkwk −Kkvk

Since x̃k is uncorrelated with wk and vk,

Pk+1|k = (Fk −KkHk)Pk|k−1(Fk −KkHk)
T +GkQkG

T
k

+KkRkK
T
k − (GkSkK

T
k +KkS

T
k G

T
k )

This completes the filter equations for this case.
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Addendum: A Hilbert space interpretation

The definitions and results concerning linear estimators can be nicely interpreted in

terms of a Hilbert space formulation.

Consider for simplicity all RVs in this section to have 0 mean.

Recall that a Hilbert space is a (complete) inner-product space. That is, it is a linear

vector space V , with a real-valued inner product operation ⟨v1, v2⟩ which is bi-linear,

symmetric, and non-degenerate (⟨v, v⟩ = 0 iff v = 0). (Completeness means that

every Cauchy sequence has a limit.) The derived norm is defined as ∥v∥2 = ⟨v, v⟩.
The following facts are standard:

1. A subspace S is a linearly-closed subset of V . Alternatively, it is the linear

span of some set of vectors {vα}.

2. The orthogonal projection ΠSv of a vector v unto the subspace S is the closest

element to v in S, i.e., the vector v′ ∈ S which minimizes ∥v − v′∥. Such a

vector exists and is unique, and satisfies (v −ΠSv) ⊥ S, i.e., ⟨v −ΠSv, s⟩ = 0

for s ∈ S.

3. If S = span{s1, . . . , sk}, then ΠSv =
∑k

i=1 αisi, where

[α1, . . . , αk] = [⟨v, s1⟩, . . . , ⟨v, sk⟩][⟨si, sj⟩i,j=1...k]
−1

4. If S = S1 ⊕ S2 (S is the direct sum of two orthogonal subspaces S1 and S2),

then

ΠSv = ΠS1v +ΠS2v .

If {s1, . . . , sk} is an orthogonal basis of S, then

ΠSv =
k∑

i=1

⟨v, si⟩⟨si, si⟩−1si

5. Given a set of (independent) vectors {v1, v2 . . . }, the following Gram-Schmidt

procedure provides an orthogonal basis:

ṽk = vk − Πspan{v1...vk−1}vk

= vk −
k−1∑
i=1

⟨vk, ṽi⟩⟨ṽi, ṽi⟩−1vi
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We can fit the previous results on linear estimation to this framework by noting the

following correspondence:

• Our Hilbert space is the space of all zero-mean random variables X (on a

given probability space) which are square-integrable: E(X2) = 0. The inner

product in defined as ⟨X,Y ⟩ = E(XY ).

• The optimal linear estimator EL(xk|Zk), with Zk = (z0, . . . , zk), is the orthog-

onal projection of the vector xk on the subspace spanned by Zk. (If xk is

vector-valued, we simply consider the projection of each element separately.)

• The innovations process {zk} is an orthogonalized version of {zk}.

The Hilbert space formulation provides a nice insight, and can also provide useful

technical results, especially in the continuous-time case. However, we shall not go

deeper into this topic.
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4.4 The Kalman Filter as a Least-Squares Problem

Consider the following deterministic optimization problem.

The cost function (to be minimized):

Jk =
1

2
(x0 − x0)

TP−1
0 (x0 − x0)

+
1

2

k∑
l=0

(zl −Hlxl)
TR−1

l (zl −Hlxl)

+
1

2

k−1∑
l=0

wT
l Q

−1
l wl

under constraints:

xl+1 = Flxl +Glwl , l = 0, 1, . . . , k − 1

The variables are:

x0, . . . xk; w0, . . . wk−1 .

Here x0, {zl} are given vectors, and P0, Rl, Ql symmetric positive-definite matrices.

Let (x
(k)
o , . . . , x

(k)
k ) denote the optimal solution of this problem. We claim that x

(k)
k

is given by exactly the same equations as x̂k|k in the corresponding KF problem.

This claim can be established by writing explicitly the least-squares solution for

k − 1 and k, and manipulating the matrix expressions. We will take here a quicker

route, using the Gaussian insight.
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Theorem The minimizing solution (x
(k)
o , . . . , x

(k)
k ) of the above LS problem is the

maximizer of the conditional probability (that is, the MAP estimator):

p(x0, . . . , xk|Zk) , w.r.t.(xo, . . . , xk)

related to the Gaussian model:

xk+1 = Fkxk +Gkwk , x0 ∼ N(x0, P0)

zk = Hkxk + vk , wk ∼ N(0, Qk), vk ∼ N(0, Pk)

with wk, vk white and independent of x0.

Proof: Write down the distribution p(x0 . . . xk, Zk).

Immediate Consequence: Since for Gaussian RV’sMAP=MMSE, then (x0, . . . , xk)
(k)

are equivalent to the expected means: In particular, x
(k)
k = x+

k .

Remark: The above theorem (but not the last consequence) holds true even for the

non-linear model: xk+1 = Fk(xk) +Gkwk.
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4.5 The KF Equations – Summary

a. The basic equations

Initial Conditions:

x̂−
0 = x0 , E(x0), P−

0 = P0 , cov(x0) .

Measurement update:

x̂+
k = x̂−

k +Kk(zk −Hkx̂
−
k )

P+
k = P−

k −KkHkP
−
k

where Kk is the Kalman gain matrix:

Kk = P−
k HT

k (HkP
−
k HT

k +Rk)
−1 .

Time update:

x̂−
k+1 = Fkx̂

+
k [+Bkuk]

P−
k+1 = FkP

+
k F T

k +GkQkG
T
k

Note: The measurement update above is valid for any gain matrix Kk, not just the

optimal one.

b. One-step iterations

The two-step equations may obviously be combined into a one-step update which

computes x̂+
k+1 from x̂+

k (or x̂−
k+1 from x̂−

k ).

For example,

x̂−
k+1 = Fkx̂

−
k + FkKk(zk −Hkx̂

−
k )

P−
k+1 = Fk(P

−
k −KkHkP

−
k )F T

k +GkQkG
T
k .

Lk , FkKk is also known as the Kalman gain.

The iterative equation for P−
k is called the (discrete-time, time-varying) Matrix

Riccati Equation.

c. Other important quantities
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The measurement prediction, the innovations process, and the innovations covari-

ance are given by

ẑk , E(zk|Zk−1) = Hkx̂
−
k (+Bkuk)

z̃k , zk − ẑk = Hkx̃
−
k

Mk , cov(z̃k) = HkP
−
k HT

k +Rk

Note that Kk = P−
k HT

k M
−1
k .

d. Alternative Forms for the measurement covariance update (general

gain)

Evidently,

P+
k = P−

k −KkHkP
−
k = (I −KkHk)P

−
k .

A more significant variation is given by the Joseph form.

Noting that

xk − x̂+
k = (I −KkHk)(xk − x̂−

k )−Kkvk

it follows immediately that

P+
k = (I −KkHk)P

−
k (I −KkHk)

T +KkRkK
T
k

This form may be more computationally expensive, but has the following advan-

tages:

• Numerically, it is guaranteed to preserve positive-definiteness (P+
k > 0).

• As mentioned, it holds for any gain Kk (not just the optimal) that may be

used in the measurement update x̂+
k = x̂−

k +Kkz̃k.

e. Alternative Forms for the measurement covariance update (optimal

gain)

Substituting the optimal gain Kk in the expression for P+
k , we obtain a symmetric

expressions:

P+
k = P−

k − P−
k HT

k M
−1
k HkP

−
k

= P−
k −KkMkK

T
k
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It can also be verified that Kk = P+
k HT

k R
−1
k .

The Information Form: The covariance matrix update for the optimal measurement

update also satisfies

(P+
k )−1 = (P−

k )−1 +HT
k R

−1
k Hk

This equivalence may obtained via the useful Matrix Inversion Lemma:

(A+BCD)−1 = A−1 − A−1B(DA−1B + C−1)−1DA−1

where A, C are square nonsingular matrices (possibly of different size).

P−1 is called the Information Matrix. It forms the basis for the “information filter”,

which only computes the inverse covariances.

f. Relation to Deterministic Observers

The one-step recursion for x̂−
k is similar in form to the algebraic state observer from

control theory.

Given a (deterministic) system:

xk+1 = Fkxk +Bkuk

zk = Hkxk

a state observer is defined by

x̂k+1 = Fkx̂k +Bkuk + Lk(zk −Hkx̂k)

where Lk are gain matrices to be chosen, with the goal of obtaining x̃k , (xk−x̂k) →
0 as k → ∞.

Since

x̃k+1 = (Fk − LkHk)x̃k ,

we need to choose Lk so that the linear system defined by Ak = (Fk − LkHk) is

asymptotically stable.

This is possible when the original system is detectable.

The Kalman gain automatically satisfies this stability requirement (whenever the

detectability condition is satisfied).
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