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2 Statistical Estimation: Basic Concepts

2.1 Probability

We briefly remind some basic notions and notations from probability theory that

will be required in this chapter.

The Probability Space:

The basic object in probability theory is the probability space (2, F,P), where
) is the sample space (with sample points w € ),

F is the (sigma-field) of possible events B € F, and

P is a probability measure, giving the probabilty P(B) of each possible event.

A (vector-valued) Random Variable (RV) X is a mapping
X :Q—R".

X is also required to be measurable on (€, F), in the sense that X '(A) € F for
any open (or Borel) set A in IR".

In this course we shall not explicitly define the underlying probability space, but
rather define the probability distributions of the RVs of interest.



Distribution and Density:

For an RV X : Q — R", the (cumulative) probability distribution function (cdf) is
defined as
Fx(z) =P(X <2)2P{w: X(w) <z}, zeR".

The probability density function (pdf), if it exists, is given by

aan(ZU)

px(r) = oxy ... 0x,

The RV’s (X1,..., X) are independent if

(and similarly for their densities).
Moments:
The expected value (or mean) of X:
A
px = E(X) = /xdFX(x).
Rn
More generally, for a real function g on R",
B(9(X) = [ (o) dFx(s).
]1:{77,

The covariance matrices:
cov(X) = B{(X - B(X))(X — E(X))"}
cov(X1, Xo) = B{(X; — E(X1))(X2 — B(X3))"}.

When X is scalar then cov(X) is simply its variance.
The RV’s X; and X5 are uncorrelated if cov(Xi, Xo) = 0.



Gaussian RVs:

A (non-degenerate) Gaussian RV X on IR" has the density

1
(27)772 det(%)1/2

6_% (z—m)T =71 (xz—m) )

Ix(z) =

It follows that m = E(X), ¥ = cov(X). We denote X ~ N(m,X).
X, and X, are jointly Gaussian if the random vector (Xi; X5) is Gaussian.

It holds that:

1. X Gaussian <= all linear combinations ), a;X; are Gaussian.
2. X Gaussian = Y = AX is Gaussian.

3. X1, X jointly Gaussian and uncorrelated
= X1, Xy are independent.

Conditioning;:
For two events A, B, with P(B) > 0, define:

P(AN B)

The conditional distribution of X given Y:
Fxpy(zly) =P(X < z|Y =y)
ilir% PX<zly—e<Y <y+e).
e—
The conditional density:

" _ pxv(z,9y)

pxjy(zly) = mFX|Y<x|?/) = W)

In the following we simply write p(z|y) etc. when no confusion arises.

Conditional Expectation:

E(X|Y =y) = / zp(aly) dz
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Obviously, this is a function of y : E(X|Y =vy) = g(y).
Therefore, E(X|Y) 2 g(Y) is an RV, and a function of Y.

Basic properties:
« Smoothing: E(E(X|Y)) = E(X).

x Orthogonality principle:
E([X — E(X|Y)]h(Y)) = 0 for every scalar function h.

x E(X|Y)=FE(X)if X and Y are independent.

Bayes Rule:

Pll) = =y = Tolylop(a) de



2.2 The Estimation Problem
The basic estimation problem is:

e Compute an estimate for an unknown quantity z € X = IR",

based on measurements y = (y1,..., yn) € R™.

Obviously, we need a model that relates y to x. For example,
y=h(z)+v

where h is a known function, and v a “noise” (or error) vector.

e An estimator Z for x is a function

A

ty e E(y).

=

e The value of Z(y) at a specific observed value y is an estimate of z.

Under different statistical assumptions, we have the following major solution con-

cepts:

(i) Deterministic framework:

Here we simply look for z that minimizes the error in y ~ h(x). The most

common criterion is the square norm:
m
min ||y — h(z)|]* = minz lyi — hi(z)|?.
x x
i=1

This is the well-known (non-linear) least-squares (LS) problem.




(ii) Non-Bayesian framework:

Assume that y is a random function of . For example,

Y = h(z) 4+ v, with v an RV. More generally, we are given, for each fixed x,
the pdf p(ylz) (ie., y ~ p(-|z)).

No statistical assumptions are made on x.

The main solution concept here is the MLE.

(iii) Bayesian framework:

Here we assume that both y and = are RVs with known joint statistics. The
main solution concepts here are the MAP estimator and the optimal (MMSE) estimator.

A problem related to estimation is the regression problem: given measurements
(zk, yx)a_,, find a function h that gives the best fit y;, ~ h(zy). h is the regressor,

or regression function. We shall not consider this problem directly in this course.



2.3 The Bayesian Setting

In the Bayesian setting, we are given:

(1) px(z) — the prior distribution for x.

(i1) py|x(y|r) — the conditional distribution of Y given X = x.

Note that p(y|z) is often specified through an equation such as Y = h(X,v) or
Y = h(X) + v, with v an RV, but this is immaterial for the theory.

We can now compute the posterior probability of X:

@)
Paly) = T op(e) &

Given p(z]y), what would be a reasonable choice for z7?

The two common choices are:

(i) The mean of X according to p(x|y):
iy) = B(Xly) = [ wplaly) do.
(ii) The most likely value of X according to p(z|y):
2(y) = arg max p(z[y)

The first leads to the MMSE estimator, the second to the MAP estimator.



2.4 The MMSE Estimator

The Mean Square Error (MSE) of as estimator z is given by
A\ A N
MSE(z) = B(||X —2(Y)|]*).
The Minimial Mean Square Error (MMSE) estimator, Zyusg, is the one that mini-

mizes the MSE.

Theorem: Z\use(y) = E(X|Y =y).

Remarks:

1. Recall that conditional expectation E(X|Y) satisfies the orthogonality princi-

ple (see above). This gives an easy proof of the theorem.
2. The MMSE estimator is unbiased: E(Tyuse(Y)) = E(X).

3. The posterior MSE is defined (for every y) as:

MSE (&]y) = E(|1X = 2()II*[Y = y).
with minimal value MMSE(y). Note that

MSE(z) = E(E(IIX — (V)| IY)>
_ / MSE(2|y)p(y)dy -

Since MSE(Z|y) can be minimizing for each y separately, it follows that mini-

mizing the MSE is equivalent to minimizing the posterior MSE for every y.

Some shortcomings of the MMSE estimator are:
— Hard to compute (except for special cases).
— May be inappropriate for multi-modal distributions.

— Requires the prior p(z), which may not be available.

Example: The Gaussian Case.



Let X and Y be jointly Gaussian RVs with means

E(X):mx, E(Y):my,

XY\ [Xxx Xxv
cov = )
Y Yyx Yyy

By direct calculation, the posterior distribution pxy—, is Gaussian, with mean

and covariance matrix

1
mx)y = mx + XxyXyy (y —my ),
and covariance

Yxly = Xxx — YxySyy Ty x -

(If Z{,%/ does not exist, it may be replaced by the pseudo-inverse.) Note that the

posterior variance X x|, does not depend on the actual value y of Y'!

It follows immediately that for the Gaussian case,
Iamse(y) = E(X]Y =y) = mxyy,
and the associated posterior MMSE equals
MMSE(y) = E(||X — @mvse(y)|I*[Y = y) = trace(Sxy) -

Note that here Zynsg is a linear function of y. Also, the posterior MMSE does not

depend on y.



2.5 The Linear MMSE Estimator

When the MMSE is too complicated we may settle for the best linear estimator.

Thus, we look for Z of the form:
(y) =Ay+0b

that minimizes

M&ﬁ@y:EQLx—jaqnﬂ.

The solution may be easily obtained by differentiation, and has exactly the same

form as the MMSE estimator for the Gaussian case:
i:L(y) = Mx + nyz;;(y — my) .

Note:

The LMMSE estimator depends only on the first and second order statistics
of X and Y.

The linear MMSE does not minimize the posterior MSE, namely MSE (zy).
This holds only in the Gaussian case, where the LMMSE and MMSE estima-

tors coincide.

The orthogonality principle here is:
E((X —an(Y)) L(Y)") =0,

for every linear function L(y) = Ay + b of y.

The LMMSE is unbiased: E(z(Y)) = E(X).
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2.6 The MAP Estimator

Still in the Bayesian setting, the MAP (Maximum a-Posteriori) estimator is defined
as

N A
Fuap(y) = argmax p(z]y) .

Noting that @1 @
~plzy)  plo)p
P =) = u

we obain the equivalent characterizations:

Zuap(y) = arg max p(z,y)

= arg max p(x)p(y|z) .

Motivation: Find the value of x which has the highest probability according to the
posterior p(z|y).

Example: In the Gaussian case, with p(x|y) ~ N(mxy, Xx|y), we have:
Iuap(y) = arg max p(zly) = mxy, = E(X[Y =y).

Hence, Zyap = Tvvsk for this case.
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2.7 Non-Bayesian Setting — The ML Estimator

The MLE is defined in a non-Bayesian setting:

« No prior p(z) is given. In fact, x need not be random.

« The distribution p(y|z) of Y given x is given as before.

The MLE is defined by:

TyL(y) = arg max p(ylz).

It is convenient to define the likelihood function L,(x) = p(y|z) and the log-likelihood

function A,(z) = log L,(x), and then we have

L (y) = arg max L,(x) = arg max Ay(z).

Note:

Often z is denoted as 6 in this context.

Motivation: The value of z that makes y “most likely”.

This justification is merely heuristic!

Compared with the MAP estimator:

Fuap(y) = argmax p(z)p(yle),
we see that the MLE lacks the weighting of p(y|x) by p(z).

The power of the MLE lies in:

x its simplicity

x good asymptotic behavior.
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Example 1: Y is exponentially distributed with rate x > 0, namely z = E(Y)™%.
Thus:

Flylr) = (1 —e™) Lyy>0p
py\x(y> =xe ™ 1{y20}
T (y) = argmax ™™

d
%(xe’xy) =0 = z=y'

(y) =y~
Example 2 (Gaussian case):

y=Hzx+v (yeR™, z € R")
v~ N(0,R,)

—_

1

Ly(x) = plyla) = ~ =3 o7 R 011

oY

log Ly(z) =¢; — 5 (y— Hz)' R, ' (y — Hx)
Zvp, = argmin (y — Hz)' Ry — Hx).
This is a (weighted) LS problem! By differentiation,
HTREI(y - HI’) - 07
v = (H'R;*H)Y ' HT R Yy

(assuming that HT R;1H is invertible: in particular, m > n).
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2.8 Bias and Covariance

Since the measurement y is random, the estimate X = z(Y') is a random variable,

and we can relate to its mean and variance.

The conditional mean of Z is given by

A A 5 > A
in(e) £ B(X[e) = BXIX =) = [ 4 plolo) dy
The bias 7 is defined as
b(z) = E(X|z) —z.
The of estimator Z is (conditionally) unbiased if b(x) = 0 for every x € X.

The covariance matriz of T is,

cov(ilz) = E(X — E(X|2))(X — B(X|z)|X = z)
In the scalar case, it follows by orthogonality that

MSE(z|z) = E((x — X)*z) = E((x — E(X|2) + E(X|z) — X)?|z)
= cov(Z|z) + b(z)?.

Thus, if # is conditionally unbiased, MSE(Z|z) = cov(z|x).

Similarly, if x is vector-valued, then MSE(Z|z) = trace(cov(z|z)) + ||b(z)||?.

In the Bayesian case, we say that z is unbiased if F(z(Y)) = E(X). Note that the
first expectation is both over X and Y.
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2.9 The Cramer-Rao Lower Bound (CRLB)

The CRLB gives a lower bound on the MSE of any (unbiased) estimator. For

illustration, we mention here the non-Bayesian version, with a scalar parameter x.

Assume that Z is conditionally unbiased, namely E,(z(Y)) = x. (We use here F,()
for E(-|X = z)). Then

MSE(i|z) = E{(&(Y) — 2)*} > J(z) !,

where J is the Fisher information:

P Inp(Y|x)
-

_ Ex{(ﬁlngg']x))2} |

An (unbiased) estimator that meets the above CRLB is said to be efficient.

>

J ()
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2.10 Asymptotic Properties of the MLE

Suppose x is estimated based on multiple i.i.d. samples:

n

y=y"= 1, ya), with py"|z) = [ | polwil2).

i=1

For each n > 1, let 2" denote an estimator based on y". For example, 2" = 2.
We consider the asymptotic properties of {2"}, as n — 0.

Definitions: The (non-Bayesian) estimator sequence {#(™} is termed:

« Consistent if: lim 2"(Y™) =2 (w.p. 1).

n—o0

x Asymptotically unbiased if: lim E*(z"(Y")) = x.

n—o0

x Asymptotically efficient if it satisfies the CRLB for n — oo, in the sense that:
lim J"(z)- MSE (z") = 1.
n—oo
Here MSE(2") = E*(2"(Y™) — x)?), and J" is the Fisher information for y".

For i.i.d. observations, J" = nJ).

The ML Estimator 2y, is both asymptotically unbiased and asymptotically efficient

(under mild technical conditions).
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