
3.1

Learning in Complex Systems Spring 2011
Lecture Notes Nahum Shimkin

3 Dynamic Programming – Infinite Horizon

3.1 Performance Criteria

We next consider the case of infinite time horizon, namely {0,1,2, ,}=T … . The
importance of the infinite horizon model relies on the following observations:
1. In many problems, a specific finite time horizon is not easily specified, and the

infinite horizon formulation is more natural.
2. More importantly – stationary problems with infinite time horizon lead to optimal

stationary strategies, which offer great simplicity.

There are several possible performance criteria for infinite-horizon problems. The more
common ones are:

1. Total cost:

 , , ,
1

0 0
(, ,)() ()s s s

t t t t t
t t

J E R E r s a sπ π π
∞ ∞

+
= =

= =∑ ∑

2. Discounted cost:

 , ,

0
()s s t

t
t

J E Rπ π γ
∞

=
= ∑

where 0 1γ< < is the discount factor.

3. Average cost:

1

, ,

0

1liminf ()
N

s s
tN t

NJ E Rπ π
−

→∞ =
= ∑

* Note: we use the common terminology of "cost" even though here we consider
rewards that we wish to maximize. The terms "total return" or "total reward" etc. can be
used instead, but are less common.

It is obvious that the total cost might diverge (go to infinity, or even not converge at all
if both negative and positive rewards are possible). Therefore, further model
assumptions are required to ensure that the optimization problem is well defined in that
case.

The discounted cost is the "best behaved" – discounting ensures convergence (at least
when the one-stage rewards are bounded), and therefore no additional assumptions are
required.

The average cost requires more sophisticated analysis, related to long-term properties of
Markov chains. It will not be treated in this chapter.

3.2

3.2 Discounted Cost

We consider first the discounted cost criterion:

0
0

() |()t
t

t
J s E R s sπ π
γ γ

∞

=
= =∑

where 0 1γ< < . The sum converges when tR is bounded. This is trivially ensured in
the case of finite state and action spaces that we consider here.

 We further consider the stationary problem:

 (' | ,) (' | ,)tp s s a p s s a≡ and (, , ') (, , ')tr s a s r s a s≡ for all 0t ≥ .

3.2.1 The Basic Operators

Denote

() ()V s J sπ π
γ=

 *() sup ()V s V sπ

π
=

where the supremum is taken over all (general) policies.

Let π denote a stationary policy, namely : S Aπ → and ()t ta sπ= . Let SR denote the
space of functions :V S → R . Note that V can also be viewed as an | |S -dimensional
vector.

 Define the following operators over SR :

 ': ()() (' | , ())[(, (), ') (')]s ST T V s p s s s r s s s V sπ π
γ γ π π γ∈= +∑

* *
': ()() max (' | ,)[(, , ') (')]s Sa A

T T V s p s s a r s a s V sγ γ γ
∈∈

= +∑

Let || || max | () |s SV V s∞ ∈ denote the max-norm of V .

3.3

Theorem 1 (Contraction property)
(i) Tπ

γ is a γ -contraction operator with respect to the max-norm, namely

 1 2 1 2|| || || ||T V T V V Vπ π
γ γ γ∞ ∞− ≤ − for all 1 2, SV V ∈R

(ii) Similarly, *Tγ is an γ -contraction operator with respect to the max-norm.

Proof: (i) For every s ,

1 2 1 2'

1 2'

1 2 1 2'

()() (' | , ())[(') (')]

(' | , ()) (') (')

(' | , ()) (') (') (') (') .

s

s

s

T V T V s p s s s V s V s

p s s s V s V s

p s s s V s V s V s V s

π π γ π

γ π

γ π γ∞ ∞

− = −

≤ −

≤ − = −

∑
∑
∑

Since this holds for every s S∈ the required inequality follows.

(ii) Home exercise (a bit harder!). □

We next quote the following basic property of contraction operators.

Theorem (The Banach fixed point theorem). Let V be a Banach space (namely, a
complete normed linear space) , and let :T →V V be a contraction operator, namely
there exists (0,1)β ∈ so that 1 2 1 2|| || || ||TV TV V Vβ− ≤ − for all 1 2V V ∈, V . Then

(C1) The equation TV V= has a unique solution *V ∈V .

(C2) For any 0V ∈V , *
0lim n

n T V V→∞ = .

Proof:

(C1) Uniqueness: Let 1V and 2V be two solutions of TV V= , then

1 2 1 2 1 2|| || | || || ||V V TV TV V Vβ− = − ≤ − ,

which implies that 1 2|| || 0V V− = , or 1 2V V= .

Existence (outline): (i) show that 0
n

nV T V (with 0V arbitrary) is a Cauchy sequence.
(ii) Since the space V is complete by assumption, this implies that nV converges to

some *V ∈V . (iii) Now show that *V satisfies the equation TV V= .

(C2) We have just shown that, for any 0V , 0
n

nV T V converges to a solution of
TV V= , and that solution was shown before to be unique. □

3.4

3.2.2 Value Iteration with a Fixed Policy

Proposition 2 Let π be a stationary policy, and let V π denote its value function.

Then V π is the unique solution of V T Vπ≡ . More explicitly, we have

'() (' | , ())[(, (), ') (')] ,s SV s p s s s r s s s V s s Sπ π γ∈= + ∈∑ (*)

Proof: That V π satisfies the equation V T Vπγ≡ follows similarly to the finite horizon

case. Uniqueness of the solution follows since Tπ
γ is a contraction, see property (C1) of

the fixed-point theorem. □

It is important to note that (*) is just a set of | |S linear equations. If we define the

vector rπ via '() (' | , ()) (, (), ')sr s p s s s r s s sπ π π=∑ and the transition matrix Pπ via

(' |) (' | , ())P s s p s s sπ π= , then we can write this set of equations as V r P Vπ πγ= + ,

with solution 1()V I P rπ π πγ −= − .

Proposition 3 For any initial value 0V , define recursively 1n nV T Vπγ −= . Then

nV V π→ .

Proof: Since 0()n

nV T Vπ
γ= , the required convergence follows from property (C2) of

the contraction Tπ
γ together with the previous proposition. □

In fact, it is easy to verify that

()

()
0 1 1 0

1
0 00

() () |

() |

n n

n t n
t Nt

V s E R V s s s

E R V s s s

π

π

γ

γ γ

−

−
=

= + =

= = + =∑…

That is, nV is the n-step discounted cost with terminal cost function 0V (under the

policy π). Since 1γ < , it is easy to see directly that nV V π→ .

In summary:

• Proposition 2 allows to compute V π by solving a set of | |S linear equations.

• Proposition 3 computes V π by an infinite recursion.

3.5

3.2.3 Bellman's Optimality Equation

Recall that *() sup ()V s V sπ

π∈Π= is the optimal value function (with respect to the γ -
discounted cost criterion).

Theorem 4 (Optimality Equation)
(i) *V is the unique solution of *V T Vγ= , namely of the following set of (nonlinear)
equations:

'() max (' | ,)[(, , ') (')]s Sa A
V s p s s a r s a s V sγ

∈∈
= +∑ , s S∈ .

(ii) Any stationary policy *π that satisfies
* *

'() arg max (' | ,)[(, , ') (')]a A s Ss p s s a r s a s V sπ γ∈ ∈∈ +∑

is an optimal policy (for any initial state s S∈) .

For the proof, we first establish the following result.

Theorem 5 (Value Iteration)
Starting with an arbitrary 0

SV ∈R , define recursively *
1n nV T Vγ+ = , namely

1 '() max (' | ,)[(, , ') (')]n ns Sa A
V s p s s a r s a s V sγ+ ∈∈

= +∑ .

Then *limn nV V→∞ = , where the rate of convergence is exponential.

A short version of this claim: * *
0()nT V Vγ α→ , for any 0V .

Proof: Using our previous results on the finite-horizon problem, it follows
immediately that

1
,

0
0

() max ()()
n

s t n
n t n

t
V s E R V sπ

π
γ γ

−

=
= +∑

This may be verified to be within a margin of max 0(/(1) || ||)n R Vγ γ ∞− + from the

optimal value *()V sγ . As 1γ < , this implies that nV converges to *Vγ at an exponential
rate. □

3.6

Proof of Theorem 4:
(i) Recall that *Tγ is a contraction operator. This implies the existence and uniqueness of

the solution to *V T Vγ= . Let V̂ denote that solution. The contraction property also

implies that *
0

ˆ()nT V Vγ → for any 0V . But in Theorem 5 we showed that
* *

0()nT V Vγ → , hence *V̂ V= and *V is the unique solution of *V T Vγ= .

(ii) By definition of *π we have

* * * * *T V T V Vπ
γ γ= =

where the last equality follows from (i). Thus the optimal value function satisfied the
equation

* * *T V Vπ
γ = . But we already know (from Prop. 2) that

*
V π is the unique

solution of that equation, hence
* *V Vπ = . This implies that *π achieves the optimal

value (for any initial state), and is therefore an optimal policy as stated. □

The optimality equation provides a useful characterization of the optimal value function
and of the optimal control policy. However, this equation is non-linear in general (due
to the required maximization), and cannot be solved directly. Several methods have
been devised for the solution of this equation, with the most basic ones being:

• Value Iteration

• Policy Iteration

• Linear Programming

We proceed to explain these methods.

3.7

3.2.4 Value Iteration

The Value Iteration algorithm is already defined in Theorem 5, and repeated here:

• Start with any initial value function 0V .

• Compute recursively *
1n nV T Vγ+ = , namely

 1 '() max (' | ,)[(, , ') (')]n ns Sa A
V s p s s a r s a s V sγ+ ∈∈

= +∑ , s S∈ .

As * *

0()nT V Vγ → , we can compute *V to any accuracy. Note that the number of
operations for each iteration here is 2)(| | | |O A S⋅ .

Error bounds and stopping rules:

It is important to have an on-line criterion for the accuracy of the n-the step solution nV .
We quote some basic bounds without proof.

(a) The distance of nV from the optimal solution is upper bounded as follows:

 *
11|| || || ||n n nV V V Vγ

γ∞ − ∞−− ≤ −

Note that the right-hand side also decays exponentially (with rate γ). This enables to
compute the value function to within any required accuracy: To ensure *|| ||nV V ε∞− ≤ ,

we need to verify that 1
1|| ||n nV V γ
γ ε− ∞
−− ≤ .

(b) If *|| ||V V ε∞− ≤ , then any stationary policy π that is greedy with respect to V ,
namely satisfies

'() arg max (' | ,)[(, , ') (')]a A ns Ss p s s a r s a s V sπ γ∈ ∈∈ +∑

is 2ε -optimal, namely *|| || 2V Vπ ε∞− ≤ .

This enable to obtain a 2ε -optimal policy from an ε -approximation of *V .

More refined error bounds can be found in the texts on Dynamic Programming.

3.8

3.2.5 Policy Iteration

This procedure (by Howard, 1960) computes *V and *π in a finite number of steps.
This number is typically small (on the same order as | |S).

The basic principle behind Policy Iteration is Policy Improvement. Let π be a
stationary policy, and let V π be its value function. A stationary policy π is called π -

improving if it is a greedy policy with respect to V π , namely

'() arg max (' | ,)[(, , ') (')]a A s Ss p s s a r s a s V sππ γ∈ ∈∈ +∑ , s S∈ .

Lemma 6 (Policy Improvement)
V Vπ π≥ (component-wise), and equality holds if and only if π is optimal.

Proof: Observe first that

*V T V T V T Vπ π π π π π
γ γ γ= ≤ =

The first equality follows since V π is the value function for the policy π , the
inequality follows because of the maximization in the definition of *Tγ , and the last
equality by definition of the improving policy π .
It is easily seen that Tπ

γ is a monotone operator (for any policy π), namely 1 2V V≤

implies 1 2T V T Vπ π
γ γ≤ . Applying Tπ

γ repeatedly to both sides of the above inequality

V T Vπ π π
γ≤ therefore gives

2() lim ()n
n

V T V T V T V Vπ π π π π π π π
γ γ γ

→∞
≤ ≤ ≤ ≤ =

where the last inequality follows by value iteration. This establishes the first claim.
The equality claim is left as an exercise. □

3.9

The last lemma leads to a finite algorithm for computing an optimal policy *π .

The Policy Iteration Algorithm:
0. Initialization: choose some stationary policy 0π .
For 0,1,k = …:

1. Policy evaluation: compute kV π ,
 e.g. by using the explicit formula 1()k k kV I P rπ π πγ −= − .

2. Policy Improvement: Compute 1kπ + , a greedy policy with respect to kV π .

3. Stop if 1k kV Vπ π+ = (or if * k kT V Vπ π
γ =), else repeat.

If follows from Lemma 6 that each policy 1kπ + is strictly better than the previous one
(unless kπ is already optimal). Since the number of stationary deterministic policies is
finite, this algorithm must end with an optimal policy in a finite number of steps.

In terms of computational complexity, Policy Iteration requires 2 3)(| | | | | |O A S S+⋅
operations per step, with the number of steps being typically small.
 In contrast, Value Iteration requires 2)(| | | |O A S⋅ per step, but the number of required
iterations may be large, especially when the discount factor γ is close to 1.

3.10

3.2.6 Some Variants on Value & Policy Iteration

A. Value Iteration – Gauss Seidel Iteration

In the standard value iteration: *
1n nV T Vγ+ = , the vector nV is held fixed while all entries

of 1nV + are updated.

An alternative is to update each element ()nV s of that vector as to 1()nV s+ as soon as
the latter is computed, and continue the calculation with the new value.

This procedure is guaranteed to be "as good" as the standard one, in some sense, and
often speeds up convergence.

B. Asynchronous Value Iteration

Here, in each iteration 1n nV V + , only a subset of the entries of nV (namely, a subset
of all states) is updated.

It can be shown that if each state is updated infinitely often, then *
nV V→ .

Asynchronous update can be used to focus the computational effort on "important'' parts
of a large-state space.

C. Modified (/Generalized/Optimistic) Policy Iteration

This scheme combines policy improvement steps with value iteration for policy
evaluation. This way the requirement for exact policy evaluation (computing

1()k k kV I P rπ π πγ −= −) is avoided.

The procedure starts with some initial value vector 0V , and iterates as follows:

• Greedy policy computation:
Compute arg maxk kT Vππ γπ ∈ , a greedy policy with respect to kV .

• Partial value iteration:
Perform km steps of value iteration, 1 ()k km

k kV T Vπ
γ+ =

This algorithm guarantees convergence of kV to *V .

Note that extreme values of km (which?) reduce this algorithm to the standard Value
Iteration or Policy Iteration.

3.11

3.2.7 Linear Programming

An alternative approach to value and policy iteration is the linear programming method.
Here the optimal control problem is formulated as a linear program (LP), which can be
solved efficiently using standard LP solvers. There are two formulations: primal and
dual. As this method is less related to learning we will only sketch it briefly.

a. The Primal LP

Recall that *V satisfies the optimality equations:

{ }'() max (,) (' | ,) (')s Sa A
V s r s a p s s a V sγ

∈∈
= + ∑ , s S∈ .

Claim: *V is the smallest function (component-wise) that satisfies the following set of
inequalities:

'() (,) (' | ,) ('), ,s Sv s r s a p s s a v s s aγ ∈≥ + ∀∑ (*)

 Proof: Suppose (())v v s= satisfies (*) . That is, v T vπγ≥ for every stationary policy π .

Then by the monotonicity of Tπ
γ ,

2 1() () ()k kv T v T v T v T v T vπ π π π π
γ γ γ γ γ

+≥ ⇒ ≥ ⇒ ⇒ ≥…

so that
2() lim ()n

n
v T v T v T v Vπ π π π

γ γ γ
→∞

≥ ≥ ≥ ≥ =…

Now, if we take π as the optimal policy we obtain *v V≥ (component-wise). □

It follows from the last claim that *V is the solution of the following linear program:

 Primal LP:
(())
min ()
v s s

v s∑

 subject to (*)

Note that the number of inequality constraints is S AN N .

b. The Dual LP
Given an LP

0
min T
x

b x
≥

, s.t. Ax c≥

its dual LP is defined as:

0
max T
y

c y
≥

, s.t. TA y b≤

We note that the dual LP is obtained by noting that the optimal value of the primal
equals:

3.12

{ } { }
0 00 0

min max () max min ()T T T T
x xy y

b x y c Ax c y x b Ay
≥ ≥≥ ≥

+ − = + −

The two LPs have the same optimal value, and the solution of one can be obtained from
that of the other.

The dual of our Primal LP turns out to be:

 Primal LP:

,
,

()
max (,)

s a
s a

f s
f r s a∑

 subject to:
 , 0 ,s af s a≥ ∀

 1
, 1

,
s a

s a
f γ−=∑

 0 , ,
,

(') (' | ,) 's a s a
s a s

p s p s s a f f s Sγ+ = ∀ ∈∑ ∑

where 0 0(('))p p s= is any probability vector (usually take as a 0/1 vector).

Interpretation:

 The variables ,s af correspond to the "state action frequencies" (for a given policy):

 , { , }
0 0

() (,)
t t

t t
s a s s a a t t

t t
f E I P s s a aγ γ

∞ ∞

= =
= =

= = =∑ ∑∼

and 0 0(') (')p s p s s=∼ is the initial state distribution.

 It is easily to see that the discounted cost can be written in terms of ,s af as:

 , (,)s a
s

f r s a∑

which is to be maximized.

 The above constraints easily follow from the definition of ,s af .

Further comments:

 The optimal policy can by obtained directly from the solution of the dual using:

 , ,

,
(|) s a s a

s s aa

f f
a s

f f
π = ≡

∑

This policy can be stochastic if the solution to the LP is not unique. However, it
will be deterministic even in that case if we choose f as an extreme solution of the
LP.

 The number of constraints in the dual is (1)S A SN N N+ + . However, the

inequality constraints are simpler than in the primal.

3.13

3.3 Stochastic Shortest-Path (SSP) Problems

This class of problems generalizes the standard shortest path problem, in which the goal
is to find the shortest path to a given goal state. SSP considers the (undiscounted) total
cost, with the number of steps not bounded a-priori. However, the process effectively
halts when it reaches a given "goal" state.

Consider then the stationary MDP model, with (undiscounted) total cost function:

0
0

() |()t
t

V s E R s sπ π
∞

=
= =∑

We assume that there exists a specific state, the goal or terminal state, denoted '0'. This
state has no actions, and is
 (a) Absorbing: (0 | 0) 1p = .
 (b) Costless: (0) 0r = .

To ensure that the total cost is well defined and meaningful, we will add some
assumptions on the model that ensure that the terminal state can and will be reached.
One possible set of assumptions is the following:

Assumption A
(A1) For every state s there exists a stationary policy π so that state 0 is reached
 from s with positive probability.
(A2) ()V sπ = −∞ for any s and π which do not satisfy the above.

Remarks:

• Essentially – (A1) ensures we can reach state 0, and (A2) ensures we want to
reach it.

• (A1) can be seen to be equivalent to existence of a fixed policy π under which
state 0 is reached from every state s with positive probability. Such a policy is
called proper.

• In the deterministic-transitions case, (A1) means there is a path to state 0 from
every state s . (A2) then means that every non-terminating path has infinite
cost. This is equivalent to requiring that every loop (closed path) has strictly
negative reward.

• (A2) can be replaced with (,) 0r s a < , the proofs are actually easier then.

3.14

Results: The SSP problem is harder than the discounted one, because of lack of
immediate contraction properties. However, the main results do carry over – including
existence of optimal stationary policies, optimality equations, value iteration, and policy
iteration. The Dynamic Programming operators are the same as before, with 1γ = .
We note however that the solutions to the DP equations are unique only up to a constant
vector, that is, if (())s Sv s ∈ is a solution, then so is (())s Sv s c ∈+ . Uniqueness is obtained
by noting that ('0 ') 0V = holds for the absorbing state.

Relation to other problems: Both the finite-horizon problem and the infinite-horizon
discounted-cost problem can be embedded within an SSP problem (exercise).

We finally note that in the deterministic version of SSP, value iteration terminates in a
finite number of steps, and both backward and forward recursions are possible.

