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3 Dynamic Programming  –  Infinite Horizon 
 

3.1 Performance Criteria 
 
We next consider the case of infinite time horizon, namely {0,1,2, ,}=T … . The 
importance of the infinite horizon model relies on the following observations: 
1. In many problems, a specific finite time horizon is not easily specified, and the 

infinite horizon formulation is more natural. 
2. More importantly – stationary problems with infinite time horizon lead to optimal 

stationary strategies, which offer great simplicity.  
 
There are several possible performance criteria for infinite-horizon problems. The more 
common ones are: 
 
1. Total cost: 
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2. Discounted cost: 
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where 0 1γ< <  is the discount factor. 

3. Average cost: 
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* Note: we use the common terminology of "cost" even though here we consider 
rewards that we wish to maximize. The terms "total return" or "total reward" etc. can be 
used instead, but are less common.   
  
It is obvious that the total cost might diverge (go to infinity, or even not converge at all 
if both negative and positive rewards are possible). Therefore, further model 
assumptions are required to ensure that the optimization problem is well defined in that 
case.  
 
The discounted cost is the "best behaved" – discounting ensures convergence (at least 
when the one-stage rewards are bounded), and therefore no additional assumptions are 
required. 
 
The average cost requires more sophisticated analysis, related to long-term properties of 
Markov chains. It will not be treated in this chapter. 
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3.2 Discounted Cost 
 
We consider first the discounted cost criterion: 
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where 0 1γ< < . The sum converges when tR  is bounded. This is trivially ensured in 
the case of finite state and action spaces that we consider here. 
 
 We further consider the stationary problem: 

                        ( ' | , ) ( ' | , )tp s s a p s s a≡  and ( , , ') ( , , ')tr s a s r s a s≡  for all 0t ≥ . 
 
 
3.2.1   The Basic Operators 
 
Denote 

( ) ( )V s J sπ π
γ=  

      *( ) sup ( )V s V sπ

π
=  

where the supremum is taken over all (general) policies.     
 
Let π denote a stationary policy, namely : S Aπ →  and ( )t ta sπ= . Let SR  denote the 
space of functions :V S → R . Note that V  can also be viewed as an | |S -dimensional 
vector. 
 
 Define the following operators over SR : 

    ': ( )( ) ( ' | , ( ))[ ( , ( ), ') ( ')]s ST T V s p s s s r s s s V sπ π
γ γ π π γ∈= +∑  

* *
': ( )( ) max ( ' | , )[ ( , , ') ( ')]s Sa A

T T V s p s s a r s a s V sγ γ γ
∈∈

= +∑    

Let || || max | ( ) |s SV V s∞ ∈�  denote the max-norm of V .   
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Theorem 1 (Contraction property) 
(i) Tπ

γ  is a γ -contraction operator with respect to the max-norm,  namely 

                      1 2 1 2|| || || ||T V T V V Vπ π
γ γ γ∞ ∞− ≤ −  for all 1 2, SV V ∈R  

(ii) Similarly, *Tγ  is an γ -contraction operator with respect to the max-norm. 
 
Proof: (i) For every s ,  
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Since this holds for every s S∈ the required inequality follows. 

(ii) Home exercise (a bit harder!).    □ 
  
 
We next quote the following basic property of contraction operators. 
 
Theorem (The Banach fixed point theorem).   Let V be a Banach space (namely, a 
complete normed linear space) , and let :T →V V  be a contraction operator, namely 
there exists (0,1)β ∈  so that 1 2 1 2|| || || ||TV TV V Vβ− ≤ −  for all 1 2V V ∈, V . Then 

(C1)  The equation TV V=  has a unique solution *V ∈V . 

(C2)  For any 0V ∈V ,  *
0lim n

n T V V→∞ = . 
 
Proof:   

(C1) Uniqueness: Let 1V and 2V  be two solutions of TV V= , then 

1 2 1 2 1 2|| || | || || ||V V TV TV V Vβ− = − ≤ − , 

which implies that 1 2|| || 0V V− = , or 1 2V V= . 

Existence (outline):  (i) show that 0
n

nV T V�  (with 0V  arbitrary) is a Cauchy sequence. 
(ii) Since the space V  is complete by assumption, this implies that nV  converges to 

some *V ∈V . (iii) Now show that *V  satisfies the equation TV V= . 

(C2) We have just shown that, for any 0V , 0
n

nV T V�  converges to a solution of 
TV V= , and that solution was shown before to be unique.  □ 
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3.2.2   Value Iteration with a Fixed Policy 
 
Proposition 2   Let π  be a stationary policy, and let V π  denote its value function. 

Then V π  is the unique solution of V T Vπ≡ . More explicitly, we have 
 

'( ) ( ' | , ( ))[ ( , ( ), ') ( ')] ,s SV s p s s s r s s s V s s Sπ π γ∈= + ∈∑ (*) 

 
Proof: That V π  satisfies the equation V T Vπγ≡  follows similarly to the finite horizon 

case. Uniqueness of the solution follows since Tπ
γ  is a contraction, see property (C1) of 

the fixed-point theorem.  □ 
 
It is important to note that (*) is just a set of | |S  linear equations. If we define the 

vector rπ  via '( ) ( ' | , ( )) ( , ( ), ')sr s p s s s r s s sπ π π=∑  and the transition matrix Pπ  via  

( ' | ) ( ' | , ( ))P s s p s s sπ π= , then we can write this set of equations as V r P Vπ πγ= + , 

with solution 1( )V I P rπ π πγ −= −  . 
 
Proposition 3   For any initial value 0V , define recursively 1n nV T Vπγ −= . Then 

nV V π→ . 
 
Proof:  Since 0( )n

nV T Vπ
γ= , the required convergence follows from property (C2) of 

the contraction Tπ
γ  together with the previous proposition.      □ 

 
In fact, it is easy to verify that 
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That is, nV  is the n-step discounted cost with terminal cost function 0V  (under the 

policy π ). Since 1γ < , it is easy to see directly that nV V π→ . 
 
 
In summary: 

• Proposition 2 allows to compute V π  by solving a set of | |S  linear equations. 

• Proposition 3 computes V π  by an infinite recursion. 
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3.2.3   Bellman's Optimality Equation 
 
Recall that *( ) sup ( )V s V sπ

π∈Π=  is the optimal value function (with respect to the γ -
discounted cost criterion).  
 
Theorem 4 (Optimality Equation) 
(i) *V  is the unique solution of *V T Vγ= , namely of the following set of (nonlinear) 
equations: 

'( ) max ( ' | , )[ ( , , ') ( ')]s Sa A
V s p s s a r s a s V sγ

∈∈
= +∑ ,     s S∈ . 

(ii) Any stationary policy *π  that satisfies  
* *

'( ) arg max ( ' | , )[ ( , , ') ( ')]a A s Ss p s s a r s a s V sπ γ∈ ∈∈ +∑  

is an optimal policy (for any initial state s S∈ ) .  
 
 
 
For the proof, we first establish the following result. 
 
Theorem  5 (Value Iteration)    
Starting with an arbitrary 0

SV ∈R ,  define recursively *
1n nV T Vγ+ = , namely  

1 '( ) max ( ' | , )[ ( , , ') ( ')]n ns Sa A
V s p s s a r s a s V sγ+ ∈∈

= +∑ . 

Then *limn nV V→∞ = , where the rate of convergence is exponential.  

A short version of this claim: * *
0( )nT V Vγ α→ , for any 0V . 

 
Proof:  Using our previous results on the finite-horizon problem, it follows 
immediately that 
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This may be verified to be within a margin of max 0( /(1 ) || || )n R Vγ γ ∞− +  from the 

optimal value *( )V sγ . As 1γ < , this implies that nV  converges to *Vγ  at an exponential 
rate.  □ 
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Proof of Theorem 4: 
(i) Recall that *Tγ  is a contraction operator. This implies the existence and uniqueness of 

the solution to *V T Vγ= . Let V̂  denote that solution. The contraction property also 

implies that *
0

ˆ( )nT V Vγ →  for any 0V . But in Theorem 5 we showed that 
* *

0( )nT V Vγ → , hence *V̂ V=   and *V   is the unique solution of  *V T Vγ= .  
 
(ii) By definition of  *π  we have 

* * * * *T V T V Vπ
γ γ= =  

where the last equality follows from (i). Thus the optimal value function satisfied the 
equation 

* * *T V Vπ
γ = . But we already know (from Prop. 2) that 

*
V π  is the unique 

solution of that equation, hence 
* *V Vπ = . This implies that *π  achieves the optimal 

value (for any initial state), and is therefore an optimal policy as stated.  □ 
  
 
The optimality equation provides a useful characterization of the optimal value function 
and of the optimal control policy. However, this equation is non-linear in general (due 
to the required maximization), and cannot be solved directly. Several methods have 
been devised for the solution of this equation, with the most basic ones being: 

• Value Iteration 

• Policy Iteration 

• Linear Programming 

We proceed to explain these methods. 
 



3.7 

3.2.4   Value Iteration 
 
The Value Iteration algorithm is already defined in Theorem 5, and repeated here: 
 

• Start with any initial value function 0V . 

• Compute recursively *
1n nV T Vγ+ = , namely 

 1 '( ) max ( ' | , )[ ( , , ') ( ')]n ns Sa A
V s p s s a r s a s V sγ+ ∈∈

= +∑ ,       s S∈ . 

 
As * *

0( )nT V Vγ → , we can compute  *V  to any accuracy.  Note that the number of 
operations for each iteration here is 2 )(| | | |O A S⋅ .  
 
 
Error bounds and stopping rules:  
 
It is important to have an on-line criterion for the accuracy of the n-the step solution nV . 
We quote some basic bounds without proof.   
 
(a)  The distance of nV  from the optimal solution is upper bounded as follows: 

                                           *
11|| || || ||n n nV V V Vγ

γ∞ − ∞−− ≤ −  

Note that the right-hand side also decays exponentially (with rate γ ). This enables to 
compute the value function to within any required accuracy: To ensure *|| ||nV V ε∞− ≤ , 

we need to verify that 1
1|| ||n nV V γ
γ ε− ∞
−− ≤ . 

 
(b)  If *|| ||V V ε∞− ≤ , then any stationary policy π  that is greedy with respect to V , 
namely satisfies  

'( ) arg max ( ' | , )[ ( , , ') ( ')]a A ns Ss p s s a r s a s V sπ γ∈ ∈∈ +∑  

is 2ε -optimal, namely *|| || 2V Vπ ε∞− ≤ .  

This enable to obtain a 2ε -optimal policy from an ε -approximation of  *V . 
 
 
More refined error bounds can be found in the texts on Dynamic Programming. 
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3.2.5   Policy Iteration 
 
This procedure (by Howard, 1960) computes *V  and *π  in a finite number of steps. 
This number is typically small (on the same order as | |S ).  
 
The basic principle behind Policy Iteration is Policy Improvement. Let π  be a 
stationary policy, and let V π   be its value function. A stationary policy π  is called π - 

improving if it is a greedy policy with respect to V π , namely  

'( ) arg max ( ' | , )[ ( , , ') ( ')]a A s Ss p s s a r s a s V sππ γ∈ ∈∈ +∑ ,    s S∈ . 

 
Lemma 6  (Policy Improvement) 
V Vπ π≥  (component-wise), and equality holds if and only if  π  is optimal. 
 
Proof:  Observe first that  

*V T V T V T Vπ π π π π π
γ γ γ= ≤ =  

The first equality follows since V π   is the value function for the policy π , the 
inequality follows because of the maximization in the definition of  *Tγ , and the last 
equality by definition of the improving policy π .     
It is easily seen that Tπ

γ  is a monotone operator (for any policy π ), namely 1 2V V≤  

implies 1 2T V T Vπ π
γ γ≤ . Applying Tπ

γ   repeatedly to both sides of the above inequality 

V T Vπ π π
γ≤  therefore gives  

2( ) lim ( )n
n

V T V T V T V Vπ π π π π π π π
γ γ γ

→∞
≤ ≤ ≤ ≤ ="  

where the last inequality follows by value iteration. This establishes the first claim. 
The equality claim is left as an exercise.   □ 
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The last lemma leads to a finite algorithm for computing an optimal policy *π .  
 
The Policy Iteration Algorithm: 
0. Initialization: choose some stationary policy 0π . 
For 0,1,k = …: 

1. Policy evaluation: compute kV π ,  
     e.g. by using the explicit formula  1( )k k kV I P rπ π πγ −= − . 

2. Policy Improvement: Compute 1kπ + , a greedy policy with respect to kV π  . 

3. Stop if  1k kV Vπ π+ =   (or if * k kT V Vπ π
γ =  ), else repeat. 

 
If follows from Lemma 6 that each policy 1kπ +  is strictly better than the previous one 
(unless kπ  is already optimal). Since the number of stationary deterministic policies is 
finite, this algorithm must end with an optimal policy in a finite number of steps. 
 
In terms of computational complexity, Policy Iteration requires 2 3 )(| | | | | |O A S S+⋅  
operations per step, with the number of steps being typically small. 
 In contrast, Value Iteration requires 2 )(| | | |O A S⋅  per step, but the number of required 
iterations may be large, especially when the discount factor γ  is close to 1.



3.10 

3.2.6   Some Variants on Value & Policy Iteration 
 
A. Value Iteration – Gauss Seidel Iteration 

In the standard value iteration: *
1n nV T Vγ+ = , the vector nV  is held fixed while all entries 

of 1nV +  are updated. 

An alternative is to update each element ( )nV s  of that vector as to 1( )nV s+  as soon as 
the latter is computed, and continue the calculation with the new value. 

This procedure is guaranteed to be "as good" as the standard one, in some sense, and 
often speeds up convergence. 
 
 
B. Asynchronous Value  Iteration 

Here, in each iteration 1n nV V +6 , only a subset of the entries of  nV  (namely, a subset 
of all states) is updated.  

It can be shown that if each state is updated infinitely often, then *
nV V→ . 

Asynchronous update can be used to focus the computational effort on "important'' parts 
of a large-state space. 
 
 
C.  Modified (/Generalized/Optimistic) Policy Iteration 
 
This scheme combines policy improvement steps with value iteration for policy 
evaluation. This way the requirement for exact policy evaluation (computing  

1( )k k kV I P rπ π πγ −= − ) is avoided.   
 
The procedure starts with some initial value vector 0V , and iterates as follows:  

• Greedy policy computation:  
Compute arg maxk kT Vππ γπ ∈ , a greedy policy with respect to kV .  

• Partial value iteration:  
Perform km  steps of value iteration, 1 ( )k km

k kV T Vπ
γ+ =   

 
This algorithm guarantees convergence of kV  to *V . 

Note that extreme values of km  (which?) reduce this algorithm to the standard Value 
Iteration or Policy Iteration.  
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3.2.7   Linear Programming 

 

An alternative approach to value and policy iteration is the linear programming method. 
Here the optimal control problem is formulated as a linear program (LP), which can be 
solved efficiently using standard LP solvers. There are two formulations: primal and 
dual. As this method is less related to learning we will only sketch it briefly. 

a. The Primal LP  

Recall that *V  satisfies the optimality equations: 

{ }'( ) max ( , ) ( ' | , ) ( ')s Sa A
V s r s a p s s a V sγ

∈∈
= + ∑ ,     s S∈ . 

Claim: *V  is the smallest function (component-wise) that satisfies the following set of 
inequalities: 

'( ) ( , ) ( ' | , ) ( '), ,s Sv s r s a p s s a v s s aγ ∈≥ + ∀∑      (*) 

 Proof: Suppose ( ( ))v v s=  satisfies (*) . That is, v T vπγ≥  for every stationary policy π . 

Then by the monotonicity of Tπ
γ ,   

2 1( ) ( ) ( )k kv T v T v T v T v T vπ π π π π
γ γ γ γ γ

+≥ ⇒ ≥ ⇒ ⇒ ≥…  

so that 
2( ) lim ( )n

n
v T v T v T v Vπ π π π

γ γ γ
→∞

≥ ≥ ≥ ≥ =…  

Now, if we take π  as the optimal policy we obtain *v V≥  (component-wise).           □ 

   
It follows from the last claim that *V  is the solution of the following linear program: 
 

 Primal LP: 
( ( ))
min ( )
v s s

v s∑   

                            subject to  (*) 
                            

Note that the number of inequality constraints is S AN N . 
 

b. The Dual LP  
Given an LP 

0
min T
x

b x
≥

,   s.t. Ax c≥  

its dual LP is defined as: 

0
max T
y

c y
≥

,   s.t. TA y b≤  

 
We note that the dual LP is obtained by noting that the optimal value of the primal 
equals: 
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{ } { }
0 00 0

min max ( ) max min ( )T T T T
x xy y

b x y c Ax c y x b Ay
≥ ≥≥ ≥

+ − = + −  

The two LPs have the same optimal value, and the solution of one can be obtained from 
that of the other. 
 
The dual of our Primal LP turns out to be: 

 
 Primal LP:  

,
,

( )
max ( , )

s a
s a

f s
f r s a∑  

      subject to: 
    , 0 ,s af s a≥ ∀  

    1
, 1

,
s a

s a
f γ−=∑  

    0 , ,
,

( ') ( ' | , ) 's a s a
s a s

p s p s s a f f s Sγ+ = ∀ ∈∑ ∑  

where 0 0( ( '))p p s=  is any probability vector (usually take as a 0/1 vector). 
 
Interpretation: 

 The variables ,s af  correspond to the "state action frequencies" (for a given policy): 

                            , { , }
0 0

( ) ( , )
t t

t t
s a s s a a t t

t t
f E I P s s a aγ γ

∞ ∞

= =
= =
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and 0 0( ') ( ')p s p s s=∼  is the initial state distribution. 

 It is easily to see that the discounted cost can be written in terms of ,s af  as: 

                                                 , ( , )s a
s

f r s a∑  

which is to be maximized.  

 The above constraints easily follow from the definition of ,s af . 
 
Further comments: 

 The optimal policy can by obtained directly from the solution of the dual using: 

                                           , ,

,
( | ) s a s a

s s aa

f f
a s

f f
π = ≡

∑
 

This policy can be stochastic if the solution to the LP is not unique. However, it 
will be deterministic even in that case if we choose f  as an extreme solution of the 
LP. 

 
 The number of constraints in the dual is ( 1)S A SN N N+ + . However, the 

inequality constraints are simpler than in the primal. 

 



3.13 

3.3    Stochastic Shortest-Path (SSP) Problems 
 
This class of problems generalizes the standard shortest path problem, in which the goal 
is to find the shortest path to a given goal state.  SSP considers the (undiscounted) total 
cost, with the number of steps not bounded a-priori. However, the process effectively 
halts when it reaches a given "goal" state. 
 
Consider then the stationary MDP model, with (undiscounted) total cost function: 

0
0

( ) |( )t
t

V s E R s sπ π
∞

=
= =∑  

 
We assume that there exists a specific state, the goal or terminal state, denoted '0'. This 
state has no actions, and is  
 (a)  Absorbing: (0 | 0) 1p = . 
 (b)  Costless:  (0) 0r = . 
 
To ensure that the total cost is well defined and meaningful, we will add some 
assumptions on the model that ensure that the terminal state can and will be reached. 
One possible set of assumptions is the following: 
 
Assumption A 
(A1)  For every state s  there exists a stationary policy π  so that state 0 is reached 
         from s  with positive probability. 
(A2) ( )V sπ = −∞  for any s  and π  which do not satisfy the above. 
 
 
Remarks:  

• Essentially – (A1) ensures we can reach state 0, and (A2) ensures we want to 
reach it. 

• (A1) can be seen to be equivalent to existence of a fixed policy π  under which 
state 0 is  reached from every state s  with positive probability. Such a policy is 
called proper. 

• In the deterministic-transitions case, (A1) means there is a path to state 0 from 
every state s .  (A2) then means that every non-terminating path has infinite 
cost. This is equivalent to requiring that every loop (closed path) has strictly 
negative reward. 

• (A2) can be replaced with ( , ) 0r s a < , the proofs are actually easier then. 
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Results: The SSP problem is harder than the discounted one, because of lack of 
immediate contraction properties. However, the main results do carry over – including 
existence of optimal stationary policies, optimality equations, value iteration, and policy 
iteration. The Dynamic Programming operators are the same as before, with 1γ = . 
We note however that the solutions to the DP equations are unique only up to a constant 
vector, that is, if ( ( ))s Sv s ∈  is a solution, then so is ( ( ) )s Sv s c ∈+ . Uniqueness is obtained 
by noting that ('0 ') 0V =  holds for the absorbing state.  
 
Relation to other problems: Both the finite-horizon problem and the infinite-horizon 
discounted-cost problem can be embedded within an SSP problem (exercise). 
 
We finally note that in the deterministic version of SSP, value iteration terminates in a 
finite number of steps, and both backward and forward recursions are possible. 
 


