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Abstract

We consider an overloaded multi-server multi-class queueing model where customers
may abandon while waiting to be served. For class i, service is provided at rate µi, and
abandonment occurs at rate θi. In a many-server fluid regime, we show that prioritizing
the classes in decreasing order of ciµi/θi asymptotically minimizes an ergodic holding cost,
where ci denotes the equivalent holding cost per unit time for class i.

1 Introduction

We consider a parallel server queueing model with I customer classes and multiple servers.
Each server is capable of serving any one of the customers, and each customer has a single
service requirement. Customers arrive according to renewal processes. The service time for
a customer of class i is exponentially distributed with mean 1/µi. A class-i customer may
abandon the system while waiting to be served, according to an exponential clock with mean
1/θi. A cost c̄i ≥ 0 per unit time is incurred for holding a class-i customer in the queue, in
addition to a penalty γi for each abandonment of a customer of that class. In this paper we
shall be interested in minimizing the corresponding long-term average cost. Our focus will be
on the overloaded system regime, where the total incoming work exceeds the service capacity.
First, we argue that the cost is bounded below by the solution to a simple linear program.
Then we specialize to a Markovian model (by letting arrivals be Poisson), and consider the
system in a fluid limited regime where both the arrival rates and the number of servers grow
without bound. Our main result shows that the lower bound alluded to above is asymptotically
achieved by a static priority policy which prioritizes classes in decreasing order of ciµi/θi, where
ci = c̄i + θiγi. This result applies with respect to the long term expected average cost, as well
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as for the ergodic (sample-path long term average) cost. The lower bound alluded to above is
also proved for a model with general service time distribution under a non-interruptible service
assumption.

The policy described above, referred to as the cµ/θ rule, was introduced in [1]. Both the
results of [1] and those of the present paper establish optimality of this policy in the limit as
the time (t) and the number of servers (n) grow without bound, where the difference lies in
the order of the limits. The results of [1] state that, given ε > 0, one can find t such that, as n
tends to infinity, the (sample path, average cost) performance of the proposed policy over the
time interval [0, t], is guaranteed to be optimal up to precision ε. The present paper, on the
other hand, shows that for sufficiently large n, the average cost over the infinite time interval
[0,∞) is optimal up to an arbitrary precision (depending on n). While the former approach
emphasizes finite-time behavior, the latter addresses steady state.

The results of this paper require different mathematical tools from those of [1]. The lower
bound (Propositions 2.1 and A.1 for exponential and general service time distribution, respund
(Propositions 2.1 and A.1 for exponential and general service time distribution, respectively), is
proved via a sample path analysis of the queueing process. The main tool for the upper bound
(Theorem 2.2) is a Lyapunov function type argument (Lemma 3.1) that explicitly uses the
form of the generator. Consequently, the extension of the upper bound beyond the Markovian
setting is not straightforward.

For further references and discussion regarding the problem and suggested policy, the reader
is referred to [1].

On our way to proving the main result, we analyze the Markovian model under an arbitrary
priority policy, and establish the convergence of the fluid scale steady state distribution to that
of the fluid model (Theorem 2.1). This result may be of interest on its own right. Fluid limits
of queueing networks under priority disciplines have been considered in various works and
textbooks. In [3, Section 9.3], a priority queue is considered as one of a large class of processes
for which convergence to a fluid model holds. Further properties of priority queues in heavy
traffic are analyzed in [4, Section 5.10]. Related results appear also in [2, Section 10]. These
references are all concerned with convergence of fluid scale processes, uniformly on compact
intervals of time, and therefore these results are not sufficient for the convergence of steady state
distributions. One of the standard approaches to obtaining the latter is via the construction
of a Lyapunov function, satisfying geometric ergodicity estimates, that are uniform both in n
and t. Our proof of Theorem 2.1 is based on this approach.

The rest of this paper is organized as follows. In the next section we introduce the model
with renewal arrivals, and state and prove a lower bound (Proposition 2.1). We then specialize
to a Markovian setting, and state the result on fluid scale convergence of the steady state
(Theorem 2.1), as well as our main result (Theorem 2.2), of asymptotic optimality of the cµ/θ
rule. We also provide a bound on the rate of convergence (Proposition 2.2) and an a.s. version
of the upper and lower bounds (Proposition 2.3). Section 3 contains the proofs of Theorems
2.1 and 2.2 and Propositions 2.2 and 2.3. Finally, in the Appendix, we prove an analogue
of Proposition 2.1 (lower bound) for general service time distribution and non-interruptible
service.
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Notation. For x ∈ RI , the ith element is denoted by xi, and ‖x‖ =
∑I

i=1 |xi|. For x, y ∈ RI ,
x · y =

∑
xiyi. For x ∈ R, x+ = max(x, 0), and R+ denotes the non-negative real line. For

X : R+ → Rk, some positive integer k, we denote ‖X‖∗T = supt≤T ‖X(t)‖.

2 Model and results

The queueing model consists of a parallel server system with I classes of customers and n
homogenous servers. It is defined on a probability space (Ω,F ,P), where expectation is denoted
by E. The arrivals are modeled as renewal processes Ai, where the inter-arrivals have finite
mean 1/λi. Service durations for class-i customers are i.i.d. exponential random variables with
finite mean 1/µi. Namely, for a standard (rate 1) Poisson process D̃i, the number of service
completions of class-i jobs by time t is given as

Di(t) = D̃i

(
µi

∫ t

0
Zi(s)ds

)
, (1)

where Zi(t) denotes the number of class-i customers in service at time t. For a class-i customer,
patience is assumed to be exponentially distributed, with mean 1/θi, where θi > 0. This is
modeled by introducing standard Poisson processes R̃i, and assuming that the number of
abandoning customers from buffer i by time t is given as

Ri(t) = R̃i

(
θi

∫ t

0
Qi(t)

)
, (2)

where Qi denotes the class-i queue length.

Let Xi(t) denote the total number of class-i customers present in the system at time t. The
initial conditions X1(0), X2(0), . . . , XI(0) are assumed to be finite random variables. The 3I
processes Ai, D̃i and R̃i , and the initial condition X(0) = (X1(0), X2(0), . . . , XI(0)), referred
to as the stochastic primitives, are further assumed to be mutually independent. The sample
paths of Ai, D̃i and R̃i are assumed to be right-continuous.

The above processes clearly satisfy the following relations

Xi(t) = Xi(0) + Ai(t)−Ri(t)−Di(t), (3)

Qi(t) = Xi(t)− Zi(t) ≥ 0, (4)

Zi(t) ≥ 0,
I∑

i=1

Zi(t) ≤ n. (5)

Service to customers may be interrupted by the system controller (so as to allow a customer
of another class to be served), and resumed at a later time (provided that the customer has
not abandoned in the mean time).

A control policy may be defined as a rule for allocating servers to customers, with Z
understood to be the control variable. We will find it convenient to take a more abstract view,
and identify any collection of processes

π = (D,R, X,Q, Z) (6)

3



that comply with the description above as a policy. Let constants c̄i ≥ 0 and γi ≥ 0 be given,
denoting holding cost per unit time, and abandonment cost, respectively, for class-i customers.
For a policy π = (D, R,X, Q, Z) consider the corresponding expected long term average costs

C(π) = lim inf
T→∞

1
T
E

[ ∫ T

0
c̄ ·Q(t)dt + γ ·R(T )

]

C(π) = lim sup
T→∞

1
T
E

[ ∫ T

0
c̄ ·Q(t)dt + γ ·R(T )

]
.

Using (2), it may be seen that E(R(T )) = E(
∫ T
0 θiQi(t)dt). We can therefore represent both

cost components as holding costs with weights ci = c̄i + θiγi, namely,

C(π) = lim inf
T→∞

1
T
E

[ ∫ T

0
c ·Q(t)dt

]
(7)

C(π) = lim sup
T→∞

1
T
E

[ ∫ T

0
c ·Q(t)dt

]
. (8)

In what follows we shall always refer to the equivalent form (7)–(8) of the costs. We begin
with a lower bound.

Proposition 2.1. For any policy π,

C(π) ≥ Vn ,

where

Vn = inf
{

c · q : q ∈ RI
+, θiqi + µizi = λi, i = 1, . . . , I, z ∈ RI

+,
∑

i

zi ≤ n
}

.

Remark 2.1. The bound above is meaningful when the system is overloaded, in the sense that∑
i λi/µi > 1. When this conditions does not hold, it may be easily seen that Vn = 0, which

is obtained for zi = λi/µi and qi = 0. Hence, our interest in this paper is in the overloaded
regime.

Proof. Fix a policy π. By Fatou’s lemma, it suffices to prove that, with probability 1, c·Q ≥ V ,
where

Q
i
= lim inf

T

1
T

∫ T

0
Qi(t)dt.

Note that Ai(t)/t → λi a.s., while D̃i(t)/t → 1 and R̃i(t)/t → 1 a.s. Note moreover that on
the event Ω1, where t−1

∑
i

∫ t
0 Qi(s)ds grows without bound, there is nothing to prove. On the

complement of this event, which we denote by Ω2, the random variables t−1
∫ t
0 Qi(s)ds and

t−1
∫ t
0 Zi(s)ds remain bounded. Consider a sequence along which these variables converge, and

denote their respective limits as Q̂i and Ẑi. It will be argued below that

t−1Xi(t) → 0 a.s. (9)
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Dividing by t in (3), and using (9), one has

λi = lim
t→∞

[R̃i(θi

∫ t
0 Qi(s)ds)∫ t

0 Qi(s)ds

∫ t
0 Qi(s)ds

t
+

D̃i(µi

∫ t
0 Zi(s)ds)∫ t

0 Zi(s)ds

∫ t
0 Zi(s)ds

t

]
= θiQ̂i + µiẐi, (10)

a.s. on Ω2. Note that on the event that
∫ t
0 Qi(s)ds remains bounded as t → ∞, one cannot

use the convergence R̃i(t)/t → 1 above to conclude (10). However, (10) is still valid, since in
this case Q̂i = 0. A similar remark holds for Ẑi. Since the inequalities Q̂i ≥ 0, Ẑi ≥ 0 and∑

Ẑi ≤ n are clearly satisfied, it follows that c ·Q ≥ V .

It remains to prove (9). It is evident that Xi(t), the number of class-i customers present
at the system, can be upper-bounded by X̃i(t), the number of class-i customers that would
be present at the system if no service at all would be applied to this class. Specifically, using
appropriate coupling we have Xi(t) ≤ X̃i(t) (a.s.). Now X̃i(t) is equivalent to the queue length
process of an G/M/∞ queue with service rate θi > 0 per customer, which is well known to be
stable. Consequently, t−1X̃(t) → 0 a.s., as t → ∞. The same is implied for Xi(t), for each i.
This completes the proof.

Our main result will be concerned with a specific policy, and show that it achieves the
lower bound developed above, in an appropriate asymptotic sense. To present the result, we
specialize to a Markovian setting. That is, we will assume throughout what follows that the
arrival processes, Ai, are Poisson. We will refer to this setting as the Markovian model. The
result will be concerned with a sequence of models, indexed by the number of servers, n. The
parameters of the model, as well as the stochastic processes, will receive a superscript n, to
denote their dependence on the parameter. An exception is the processes D̃i and R̃i, which
are still standard Poisson. Thus, for example, equation (1) defining the departure process, will
now be written as

Dn
i (t) = D̃i

(
µn

i

∫ t

0
Zn

i (s)ds
)
,

and An
i will be a Poisson with rate λn

i . The parameters λn
i , µn

i and θn
i and initial conditions

will be assumed to satisfy the following properties.

Assumption 2.1.

(i) There exist positive constants λi, µi, θi such that, as n →∞,

λn
i /n → λi, µn

i → µi, , θn
i → θi, i = 1, 2, . . . , I. (11)

(ii) E[‖Xn(0)‖2] < ∞ for every n.

We first state a convergence result under a priority policy, that may be of interest on its
own right. For the nth system, we denote by πpr,n the work conserving policy that gives
preemptive priority to classes in increasing order of the labels. This means, in particular, that
at any given time, if some server is idle then all buffers are empty. And if a customer of some
class i > 1 is in service then no class-j customer is in the buffer, for any j < i. This is achieved
by allowing interruption of service to customers, which are moved to the buffer until there is
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again an opportunity for them to be served again (however, it is possible for an interrupted
customer to abandon). Denote

z∗ =
(λ1

µ1
, . . . ,

λi0−1

µi0−1
, 1−

i0−1∑

j=1

λj

µj
, 0, . . . , 0

)
, (12)

q∗ =
(
0, . . . , 0,

λi0 − µi0zi0

θi0

,
λi0+1

θi0+1
, . . . ,

λI

θI

)
, (13)

where, with the convention
∑0

1 = 0, i0 = max{i ∈ [1, I + 1] :
∑i−1

j=1
λj

µj
< 1}. Let x∗ = q∗ + z∗.

Theorem 2.1. Consider the Markovian model, and let Assumption 2.1 hold. Then, under
policy πpr,n,

lim
n→∞ lim sup

t→∞
E[‖n−1Xn(t)− x∗‖2] = 0, (14)

and
lim

n→∞ lim sup
t→∞

E[‖n−1Qn(t)− q∗‖2] = 0. (15)

For the nth system, we denote the costs of (7) by

Cn(π) = lim inf
T→∞

1
T
E

[ ∫ T

0
c ·Qn(t)dt

]
,

C
n(π) = lim sup

T→∞
1
T
E

[ ∫ T

0
c ·Qn(t)dt

]
,

where ci ≥ 0 do not depend on n. It is immediate from Proposition 2.1 that, under any
sequence πn of policies,

lim inf
n→∞ n−1Cn(πn) ≥ V1, (16)

where

V1 = inf
{

c · q : q ∈ RI
+, θiqi + µizi = λi, i = 1, . . . , I, z ∈ RI

+,
∑

zi ≤ 1
}

. (17)

The proposed policy, referred to as the preemptive cµ/θ priority rule [1], will be denoted
by π∗,n for the nth system. π∗,n is the work conserving policy that gives preemptive priority
to classes in decreasing order of the quantities ciµi/θi. In other words, π∗,n is identical to πpr,n

under re-labeling of the classes according to

c1µ1

θ1
≥ c2µ2

θ2
≥ · · · ≥ cIµI

θI
. (18)

As a corollary of Theorem 2.1, we obtain our main result.

Theorem 2.2. Consider the Markovian model, and let Assumption 2.1 hold. Then

lim sup
n→∞

n−1C
n(π∗,n) ≤ V1.
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In view of (16), the above result expresses asymptotic optimality of the proposed policy.

One can give a bound on the rate of convergence in the above result. Let rn = ‖θn − θ‖+
‖µn − µ‖+ ‖n−1λn − λ‖.
Proposition 2.2. Let the conditions of Theorem 2.2 hold. Then, for every n,

V1 − c0rn ≤ n−1Cn(π∗,n) = n−1C
n(π∗,n) ≤ V1 + c0(n−1 + rn)1/2,

where c0 is a constant not depending on n.

Remark 2.2. When the n-th system parameters are chosen nominally at θn = θ, µn = µ and
λn = nλ, we obtain rn = 0. In that case the implied convergence rate of the average cost is
O(n−1/2).

Finally, we state a sample-path version of Proposition 2.1 and Theorem 2.2, in terms of
the ergodic cost function.

Proposition 2.3. Under any sequence of policies πn,

lim inf
n→∞ lim inf

T→∞
1
T

∫ T

0
c ·Qn(t)dt ≥ V1, a.s.

Moreover, let the assumptions of Theorem 2.2 hold. Then, under π∗,n,

lim sup
n→∞

lim sup
T→∞

1
T

∫ T

0
c ·Qn(t)dt ≤ V1 a.s.

3 Proofs

Throughout this section, the ordering (18) of the class indices is assumed, and, unless indicated
otherwise, all stochastic processes are specified under π∗,n (equivalently, πpr,n). The linear
program (17) can easily be seen to be solved by (12) and (13) (see [1] for more details).
Moreover, since q∗ and z∗ attain the infimum (17), we have

V1 = c · q∗, (19)

and
θiq

∗
i + µiz

∗
i = λi, i = 1, 2, . . . , I. (20)

The analysis of the policy π∗,n will be based on the fact that the process Xn, under π∗,n,
is Markovian. It is easy to see that the infinitesimal generator of Xn is given by

Lnf(x) =
I∑

i=1

λn
i (f(x + ei)− f(x))

+
I∑

i=1

µn
i Z

n
i (x) (f(x− ei)− f(x))

+
I∑

i=1

θn
i Qn

i (x) (f(x− ei)− f(x)) , x ∈ ZI
+,

(21)
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where Zn,Qn : RI
+ → RI

+ are defined as

Zn
i (x) = xi ∧

(
n−

i−1∑

j=1

xj

)+
, Qn

i (x) =
[
xi −

(
n−

i−1∑

j=1

xj

)+]+
. (22)

We let fn(x) =
∑I

i=1 γi (xi − x∗i n)2, where γi > 0 are constants, not depending on n or x,
to be determined later. Our main estimate will be the following.

Lemma 3.1. Under the assumptions of Theorem 2.2, the constants γi > 0 can be chosen so
that

Lnfn(x) ≤ −afn(x) + a1‖x‖+ δnn2, x ∈ ZI
+, n ≥ n0, (23)

where a > 0, a1 and n0 are constants not depending on x or n, and δn is a sequence that is
independent of x and converges to zero.

Proof of Lemma 3.1. Notice first that

µn
i Z

n
i (x) + θn

i Qn
i (x) = µn

i xi + (θn
i − µn

i )Qn
i (x) .

Using this in (21), along with the identities (a± 1)2 − a2 = ±2a + 1 yields

Lnfn(x) =
I∑

i=1

2γi

(
xi − x∗i n +

1
2

)
λn

i

−
I∑

i=1

2γi

(
xi − x∗i n−

1
2

)[
µn

i xi + (θn
i − µn

i )Qn
i (x)

]
.

(24)

Let Y (x, n) = x− x∗n. To simplify the notation, we write Y for Y (x, n). Note that with this
notation, fn(x) =

∑
γiY

2
i . With C1 a constant not depending on n or x (but depending on

{γi}), we have

Lnfn(x) ≤ C1(n + ‖x‖) + 2
I∑

i=1

γiYi

[
λn

i − µn
i xi − (θn

i − µn
i )Qn

i (x)
]

= C1(n + ‖x‖)− 2
I∑

i=1

γiµ
n
i Y 2

i

+ 2
I∑

i=1

γiYi

[
λn

i − µn
i x∗i n− (θn

i − µn
i )Qn

i (x)
]
. (25)

Recall that x∗ = z∗ + q∗ and that, by (20), θiq
∗
i + µiz

∗
i = λi. Therefore

n−1λn
i − µn

i x∗i = n−1λn
i − µn

i (z∗i + q∗i )
= (θn

i − µn
i )q∗i + εn.

8



Here, εn → 0, by Assumption 2.1. Thus, the last term on the r.h.s. of (25) is given by

2
∑

γiYi[nεn + (θn
i − µn

i )(nq∗i −Qn
i (x))]

= 2
∑

γiYi[nεn + (θn
i − µn

i )(Qn
i (nx∗)−Qn

i (x))],

where we used the equality nq∗i = Qn
i (nx∗), that can be directly verified using the explicit

form of q∗, z∗ and x∗. By the definition of Qn, and the fact that, for any a, b ∈ R there exists
ρ ∈ [0, 1] such that a+− b+ = ρ(a− b), it is not hard to see that, for any n ∈ N and x, x̃ ∈ RI

+,
one has

Qn
i (x)−Qn

i (x̃) = ρ(xi − x̃i) + η
i−1∑

j=1

(x̃j − xj), (26)

where ρ, η ∈ [0, 1] may depend on n, x and x̃. Using this property, we can find functions
ρi, ηi : RI → [0, 1], that may depend on n, such that, with δn = |εn|,

Lnfn(x) ≤ C1(n + ‖x‖) + C2‖Y ‖nδn

− 2
I∑

i=1

γi [(1− ρi(x))µn
i + ρi(x)θn

i ] Y 2
i

+ 2
I∑

i=1

γi(θn
i − µn

i )ηi(x)Yi

i−1∑

j=1

Yj .

Note that, for every ρ ∈ [0, 1], (1 − ρ)µn
i + ρθn

i ≥ min(θn
i , µn

i ) ≥ 1
2 min(θi, µi) =: mi > 0,

provided that n is sufficiently large. Thus,

Lnfn(x) ≤ C1(n + ‖x‖) + C2‖Y ‖nδn − 2
I∑

i=1

γimiY
2
i

+ 2
I∑

i=1

γi(θn
i − µn

i )ηi(x)Yi

i−1∑

j=1

Yj .

Denote A = supn |θn
i − µn

i | < ∞. Using the inequality xy ≤ 1
2bx2 + 1

2b−1y2, which holds for
x, y ∈ R and b > 0, we bound the last term on the above display by

Bn(x) := 2A
I∑

i=1

γi

[
biY

2
i + b−1

i

( i−1∑

j=1

|Yj |
)2]

≤ 2A
I∑

i=1

[
γibiY

2
i + γib

−1
i C3

i−1∑

j=1

Y 2
j

]
,

where C3 depends only on I. Now choose bi so that 2Abi = mi/2, i = 1, 2, . . . , I. Next,
determine γi inductively, as follows. Let γ1 = 1. For i = 2, 3, . . . , I, let γi (depending on
γ1, . . . , γi−1) be determined by

2Aγib
−1
i C3 =

1
2I

min
j≤i−1

γjmj .

Then

Bn(x) ≤
I∑

i=1

[1
2
γimiY

2
i +

1
2I

i−1∑

j=1

γjmjY
2
j

]
≤

I∑

i=1

γimiY
2
i .
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Letting m = mini mi > 0, we obtain

Lnfn(x) ≤ C1(n + ‖x‖) + C2‖Y ‖nδn −
I∑

i=1

γimiY
2
i

≤ C1(n + ‖x‖) + C2δn‖Y ‖2 + C2δnn2 −m

I∑

i=1

γiY
2
i

≤ C1(n + ‖x‖) + C2δnn2 − m

2

I∑

i=1

γiY
2
i ,

for all sufficiently large n. Thus

Lnfn(x) ≤ C1(n + ‖x‖) + C2δnn2 − m

2
fn(x).

This completes the proof.

Lemma 3.2. Let the assumptions of Theorem 2.2 hold. Then, for some positive constants C̄

and C̃, not depending on n or t, E[‖Xn(t)‖] ≤ E[‖Xn(0)‖]e−C̃t + C̄n, for all t ≥ 0 and all
sufficiently large n.

proof. In this proof, we remove the dependence of the processes on n from the notation. By
(1), (2) and (3), recalling that under the assumptions of Theorem 2.2 the setup is Markovian,
we have

E[Xi(t)] = E[Xi(0)] + λn
i t− θn

i

∫ t

0
E[Qi(s)]ds− µn

i

∫ t

0
E[Zi(s)]ds.

Hence ξi(t) := E[Xi(t)] is differentiable, and, denoting mi = min(θi, µi)/2, we have

dξi(t)
dt

≤ 2nλi −miE[Qi(t) + Zi(t)] = 2nλi −miξi(t),

provided n is sufficiently large, where we used Assumption 2.1 and then (4). Hence for ξ(t) =∑
i ξi(t) we have

dξ(t)
dt

≤ Ln−Mξ(t), ξ(0) = E[‖X(0)‖],
where L and M are positive constants not depending on n or t. By standard comparison of
solutions to ordinary differential equations, ξ(t) ≤ ν(t) must hold for all t ≥ 0, where ν solves

dν(t)
dt

= Ln−Mν(t), ν(0) = E[‖X(0)‖],

that is,

ξ(t) ≤ E[‖X(0)‖] exp{−Mt}+
Ln

M
(1− exp{−Mt}), t ≥ 0.

This completes the proof.

Proof of Theorem 2.1. Since Xn is Markovian with generator Ln, the process

f(Xn(t))−
∫ t

0
Lnf(Xn(s))ds
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is a martingale whenever f is a bounded function on ZI
+. It is easy to see by (3) that Xn

i (t) ≤
Xn

i (0) + An
i (t), and since the second moment of Xn(0) is assumed to be finite, and clearly

E supt≤T [‖An(t)‖2] < ∞ for every n and T , the martingale property holds also for the quadratic
function fn. Hence

Efn(Xn(t)) = Ef(Xn(0)) + E
∫ t

0
Lnfn(Xn(s))ds. (27)

Let us prove that
lim sup

t→∞
E[‖n−1Xn(t)− x∗‖2] ≤ δ̄n, (28)

where δ̄n is a sequence converging to zero. To this end, note by (27) that Efn(Xn(t)) is
differentiable with respect to t. Denote Y n(t) := n−2Efn(Xn(t)). Then Y n(t) < ∞ for every
t and n. Moreover, dividing by n2 in (27) and using Lemma 3.1, we have

dY n(t)
dt

≤ −aY n
t +

a1

n2
E[‖Xn(t)‖] + δn, t ≥ 0.

By Lemma 3.2, for every sufficiently large n there exists Tn < ∞ such that E[‖Xn(t)‖] ≤ 2C̄n,
t ≥ Tn. Hence, denoting δ̃n = 2C̄a1n

−1 + δn, for some n0 and all n ≥ n0,

dY n(t)
dt

≤ −aY n
t + δ̃n, t ≥ Tn.

By the comparison principle for solutions of differential inequalities, Y n
t is bounded above, on

[Tn,∞), by the solution y to the differential equation

dy

dt
= −ay + δ̃n, t ≥ Tn, y(Tn) = Y n(Tn).

Hence, for some constant C1, for all n ≥ n0 and t ≥ Tn,

E[‖n−1Xn(t)− x∗‖2] ≤ C1Y
n(t) ≤ C1y(t) ≤ C1Y

n(Tn) exp{−a(t− Tn)}+ C1a
−1δ̃n.

This proves (28), hence follows (14).

To establish (15), note that we have for every n,

Qn(t) = Qn(Xn(t)), t ≥ 0.

With the notation (22), the map Q1 : RI
+ → RI

+, is given by

Q1
i (x) =

[
xi −

(
1−

i−1∑

j=1

xj

)+]+
,

and we have n−1Qn(t) = Q1(n−1Xn(t)), t ≥ 0. Noting that Q1(x∗) = q∗, using the global
Lipschitz continuity of Q1, we have by (28),

lim sup
t→∞

E[‖n−1Qn(t)− q∗‖2] ≤ C4δ̄n, (29)
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for some C4 depending only on I. This implies (15), and hence completes the proof.

Proof of Theorem 2.2. Keeping the notation of the proof of Theorem 2.1, the inequality
(29) implies that

lim sup
t→∞

E[‖n−1Qn(t)− q∗‖] ≤ (C4δ̄n)1/2,

hence
C

n(π∗,n)
n

= lim sup
T→∞

1
T

∫ T

0

c · E[Qn(t)]
n

dt ≤ c · q∗ + |c|(C4δ̄n)1/2.

Sending n → ∞, lim supn→∞ n−1C
n(π∗,n) ≤ c · q∗ = V1, where the last equality follows by

(19).

Proof of Proposition 2.2. Recall the definition of V1 in (17), and write V1(θ, µ, λ) to
denote its dependence on the parameters. It follows from Proposition 2.1 that, for any n and
any policy πn for the nth system, n−1Cn(πn) ≥ V1(θn, µn, λn

n ). It is easy to see that V1 is
Lipschitz continuous w.r.t. the three parameters. Hence follows the lower bound stated in the
proposition.

For the upper bound, a review of the proofs of Theorems 2.1 and 2.2, shows that the cost
n−1C

n(π∗,n) is bounded above by V1 + C5(δ̃n)1/2 ≤ V1 + C6(n−1 + δn)1/2, where C5, C6 are
constants, δ̃n is as in the proof of Theorem 2.1, and δn is as in the proof of Lemma 3.1. By
the proof of Lemma 3.1, δn is bounded by a constant times rn. This completes the proof.

Proof of Proposition 2.3. The lower bound follows directly from the proof of Proposition
2.1, which establishes the inequality in an a.s. sense.

For the upper bound, in view of Theorem 2.2, it suffices to show that, for every n, under
π∗,n,

lim inf
T→∞

1
T

∫ T

0
c ·Qn(t)dt = lim inf

T→∞
1
T
E

[ ∫ T

0
c ·Qn(t)dt

]
, a.s.

This property follows from ergodicity of the Markov chain Xn, which can be verified by stan-
dard techniques (such as [3, Theorem 8.6]). We omit the details.

A Appendix

We will argue that the lower bound stated in Proposition 2.1 is valid for general service
time distribution, under a non-interruptible service assumption. We shall thus model service
durations for class-i customers as i.i.d. positive random variables with finite mean 1/µi. To
this end, assume we are given nI renewal processes D̃i,k, i = 1, 2, . . . , I, k = 1, 2, . . . , n, that
are mutually independent and independent of the other stochastic primitives. For each of these
processes, the inter-event time has mean 1. Assume that the number of i-class jobs that server
k completes by time t is given as

Di,k(t) = D̃i,k

(
µi

∫ t

0
Zi,k(s)ds

)
, (30)
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where the process Zi,k takes values in {0, 1}, and Zi,k(t) = 1 if a class-i customer is served by
server k at time t. The relations (3)–(5) are still valid, and in addition, for each i, we have

N∑

k=1

Zi,k = Zi,
N∑

k=1

Di,k = Di. (31)

Unlike Section 2, we shall assume here that interruption of service is not possible. Thus
whenever a server is assigned a new customer, it serves the customer until completion of the
service requirement. The reason we do not allow interruption is that an interrupted customer
may return to a different server, or even abandon the system before ever returning to service, in
which cases (30) is not a valid description of the service process under an interruptible service
policy (except in the exponential case), and the state description becomes more involved.

Proposition A.1. For any policy π,

C(π) ≥ Vn ,

where Vn is as in Proposition 2.1.

Proof. The proof follows closely that of Proposition 2.1. We will only indicate where the
argument differs. For each k, D̃i,k(t)/t → 1 a.s. Keeping the notation from the proof of
Proposition 2.1, on the event Ω2, the random variables t−1

∫ t
0 Qi(s)ds, t−1

∫ t
0 Zi,k(s)ds, k =

1, 2, . . . , N , and t−1
∫ t
0 Zi(s)ds, remain bounded, and, on a convergent sequence (as t → ∞),

we denote their respective limits as Q̂i, Ẑi,k and Ẑi. The argument for t−1Xi(t) → 0 a.s. holds
precisely as in the proof of Proposition 2.1. Thus dividing by t in (3), and using (31),

λi = lim
t→∞

[R̃i(θi

∫ t
0 Qi(s)ds)∫ t

0 Qi(s)ds

∫ t
0 Qi(s)ds

t
+

N∑

k=1

D̃i,k(µi

∫ t
0 Zi,k(s)ds)∫ t

0 Zi,k(s)ds

∫ t
0 Zi,k(s)ds

t

]

= θiQ̂i +
N∑

k=1

µiẐi,k = θiQ̂i + µiẐi,

a.s. on Ω2. The proof is completed as that of Proposition 2.1.
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